#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################## # # Copyright (c) 2024 CICV, Inc. All Rights Reserved # ################################################################## """ @Authors: zhanghaiwen @Data: 2024/12/23 @Last Modified: 2024/12/23 @Summary: Efficient metrics calculation """ from modules.lib.score import Score from modules.lib.log_manager import LogManager import numpy as np from typing import Dict, Tuple, Optional, Callable, Any import pandas as pd class Efficient: """高效性指标计算类""" def __init__(self, data_processed): """初始化高效性指标计算类 Args: data_processed: 预处理后的数据对象 """ self.logger = LogManager().get_logger() self.data_processed = data_processed self.df = data_processed.object_df.copy() # 浅拷贝 self.ego_df = data_processed.ego_data.copy() # 浅拷贝 # 配置参数 self.STOP_SPEED_THRESHOLD = 0.05 # 停车速度阈值 (m/s) self.STOP_TIME_THRESHOLD = 0.5 # 停车时间阈值 (秒) self.FRAME_RANGE = 13 # 停车帧数阈值 # 初始化结果变量 self.stop_count = 0 # 停车次数 self.stop_duration = 0 # 平均停车时长 self.average_v = 0 # 平均速度 def _max_speed(self): """计算最大速度 Returns: float: 最大速度 (m/s) """ return self.ego_df['v'].max() def _deviation_speed(self): """计算速度方差 Returns: float: 速度方差 """ return self.ego_df['v'].var() def average_velocity(self): """计算平均速度 Returns: float: 平均速度 (m/s) """ self.average_v = self.ego_df['v'].mean() return self.average_v def stop_duration_and_count(self): """计算停车次数和平均停车时长 Returns: float: 平均停车时长 (秒) """ # 获取速度低于阈值的时间和帧号 stop_mask = self.ego_df['v'] <= self.STOP_SPEED_THRESHOLD if not any(stop_mask): return 0 # 如果没有停车,直接返回0 stop_time_list = self.ego_df.loc[stop_mask, 'simTime'].values.tolist() stop_frame_list = self.ego_df.loc[stop_mask, 'simFrame'].values.tolist() if not stop_frame_list: return 0 # 防止空列表导致的索引错误 stop_frame_group = [] stop_time_group = [] sum_stop_time = 0 f1, t1 = stop_frame_list[0], stop_time_list[0] # 检测停车段 for i in range(1, len(stop_frame_list)): if stop_frame_list[i] - stop_frame_list[i - 1] != 1: # 帧不连续 f2, t2 = stop_frame_list[i - 1], stop_time_list[i - 1] # 如果停车有效(帧数差 >= FRAME_RANGE) if f2 - f1 >= self.FRAME_RANGE: stop_frame_group.append((f1, f2)) stop_time_group.append((t1, t2)) sum_stop_time += (t2 - t1) self.stop_count += 1 # 更新起始点 f1, t1 = stop_frame_list[i], stop_time_list[i] # 检查最后一段停车 if len(stop_frame_list) > 0: f2, t2 = stop_frame_list[-1], stop_time_list[-1] last_frame = self.ego_df['simFrame'].values[-1] # 确保不是因为数据结束导致的停车 if f2 - f1 >= self.FRAME_RANGE and f2 != last_frame: stop_frame_group.append((f1, f2)) stop_time_group.append((t1, t2)) sum_stop_time += (t2 - t1) self.stop_count += 1 # 计算平均停车时长 self.stop_duration = sum_stop_time / self.stop_count if self.stop_count > 0 else 0 self.logger.info(f"检测到停车次数: {self.stop_count}, 平均停车时长: {self.stop_duration:.2f}秒") return self.stop_duration def report_statistic(self): """生成统计报告 Returns: dict: 高效性评估结果 """ # 计算各项指标 max_speed_ms = self._max_speed() deviation_speed_ms = self._deviation_speed() average_speed_ms = self.average_velocity() # 将 m/s 转换为 km/h 用于评分 max_speed_kmh = max_speed_ms * 3.6 deviation_speed_kmh = deviation_speed_ms * 3.6 average_speed_kmh = average_speed_ms * 3.6 efficient_result = { 'maxSpeed': max_speed_kmh, # 转换为 km/h 'deviationSpeed': deviation_speed_kmh, # 转换为 km/h 'averagedSpeed': average_speed_kmh, # 转换为 km/h 'stopDuration': self.stop_duration_and_count() } self.logger.info(f"高效性指标计算完成,结果: {efficient_result}") return efficient_result # ---------------------- # 基础指标计算函数 # ---------------------- def maxSpeed(data_processed) -> dict: """计算最大速度""" efficient = Efficient(data_processed) max_speed = efficient._max_speed() * 3.6 # 转换为 km/h return {"maxSpeed": float(max_speed)} def deviationSpeed(data_processed) -> dict: """计算速度方差""" efficient = Efficient(data_processed) deviation = efficient._deviation_speed() * 3.6 # 转换为 km/h return {"deviationSpeed": float(deviation)} def averagedSpeed(data_processed) -> dict: """计算平均速度""" efficient = Efficient(data_processed) avg_speed = efficient.average_velocity() * 3.6 # 转换为 km/h return {"averagedSpeed": float(avg_speed)} def stopDuration(data_processed) -> dict: """计算停车持续时间和次数""" efficient = Efficient(data_processed) stop_duration = efficient.stop_duration_and_count() return {"stopDuration": float(stop_duration)} class EfficientRegistry: """高效性指标注册器""" def __init__(self, data_processed): self.logger = LogManager().get_logger() # 获取全局日志实例 self.data = data_processed self.eff_config = data_processed.efficient_config["efficient"] self.metrics = self._extract_metrics(self.eff_config) self._registry = self._build_registry() def _extract_metrics(self, config_node: dict) -> list: """DFS遍历提取指标""" metrics = [] def _recurse(node): if isinstance(node, dict): if 'name' in node and not any(isinstance(v, dict) for v in node.values()): metrics.append(node['name']) for v in node.values(): _recurse(v) _recurse(config_node) self.logger.info(f'评比的高效性指标列表:{metrics}') return metrics def _build_registry(self) -> dict: """自动注册指标函数""" registry = {} for metric_name in self.metrics: try: registry[metric_name] = globals()[metric_name] except KeyError: self.logger.error(f"未实现指标函数: {metric_name}") return registry def batch_execute(self) -> dict: """批量执行指标计算""" results = {} for name, func in self._registry.items(): try: result = func(self.data) results.update(result) # 新增:将每个指标的结果写入日志 self.logger.info(f'高效性指标[{name}]计算结果: {result}') except Exception as e: self.logger.error(f"{name} 执行失败: {str(e)}", exc_info=True) results[name] = None self.logger.info(f'高效性指标计算结果:{results}') return results class EfficientManager: """高效性指标管理类""" def __init__(self, data_processed): self.data = data_processed self.efficient = EfficientRegistry(self.data) def report_statistic(self): """Generate the statistics and report the results.""" # 使用注册表批量执行指标计算 efficient_result = self.efficient.batch_execute() return efficient_result