123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
- @Data: 2023/06/25
- @Last Modified: 2023/06/25
- @Summary: Comfort metrics
- """
- import sys
- import math
- import pandas as pd
- import numpy as np
- import scipy.signal
- from pathlib import Path
- from typing import Dict, List, Any, Optional, Callable, Union, Tuple
- from modules.lib.score import Score
- from modules.lib.common import get_interpolation, get_frame_with_time
- from modules.lib import data_process
- from modules.lib.log_manager import LogManager
- COMFORT_INFO = [
- "simTime",
- "simFrame",
- "speedX",
- "speedY",
- "accelX",
- "accelY",
- "curvHor",
- "lightMask",
- "v",
- "lat_acc",
- "lon_acc",
- "time_diff",
- "lon_acc_diff",
- "lon_acc_roc",
- "speedH",
- "accelH",
- ]
- # ----------------------
- # 独立指标计算函数
- # ----------------------
- def calculate_weaving(data_processed) -> dict:
- """计算蛇行指标"""
- comfort = ComfortCalculator(data_processed)
- zigzag_count = comfort.calculate_zigzag_count()
- return {"weaving": float(zigzag_count)}
- def calculate_shake(data_processed) -> dict:
- """计算晃动指标"""
- comfort = ComfortCalculator(data_processed)
- shake_count = comfort.calculate_shake_count()
- return {"shake": float(shake_count)}
- def calculate_cadence(data_processed) -> dict:
- """计算顿挫指标"""
- comfort = ComfortCalculator(data_processed)
- cadence_count = comfort.calculate_cadence_count()
- return {"cadence": float(cadence_count)}
- def calculate_slambrake(data_processed) -> dict:
- """计算急刹车指标"""
- comfort = ComfortCalculator(data_processed)
- slam_brake_count = comfort.calculate_slam_brake_count()
- return {"slamBrake": float(slam_brake_count)}
- def calculate_slamaccelerate(data_processed) -> dict:
- """计算急加速指标"""
- comfort = ComfortCalculator(data_processed)
- slam_accel_count = comfort.calculate_slam_accel_count()
- return {"slamAccelerate": float(slam_accel_count)}
- # 装饰器保持不变
- def peak_valley_decorator(method):
- def wrapper(self, *args, **kwargs):
- peak_valley = self._peak_valley_determination(self.df)
- pv_list = self.df.loc[peak_valley, ['simTime', 'speedH']].values.tolist()
- if len(pv_list) != 0:
- flag = True
- p_last = pv_list[0]
- for i in range(1, len(pv_list)):
- p_curr = pv_list[i]
- if self._peak_valley_judgment(p_last, p_curr):
- # method(self, p_curr, p_last)
- method(self, p_curr, p_last, flag, *args, **kwargs)
- else:
- p_last = p_curr
- return method
- else:
- flag = False
- p_curr = [0, 0]
- p_last = [0, 0]
- method(self, p_curr, p_last, flag, *args, **kwargs)
- return method
- return wrapper
- class ComfortRegistry:
- """舒适性指标注册器"""
-
- def __init__(self, data_processed):
- self.logger = LogManager().get_logger() # 获取全局日志实例
- self.data = data_processed
- self.comfort_config = data_processed.comfort_config["comfort"]
- self.metrics = self._extract_metrics(self.comfort_config)
- self._registry = self._build_registry()
-
- def _extract_metrics(self, config_node: dict) -> list:
- """DFS遍历提取指标"""
- metrics = []
- def _recurse(node):
- if isinstance(node, dict):
- if 'name' in node and not any(isinstance(v, dict) for v in node.values()):
- metrics.append(node['name'])
- for v in node.values():
- _recurse(v)
- _recurse(config_node)
- self.logger.info(f'评比的舒适性指标列表:{metrics}')
- return metrics
-
- def _build_registry(self) -> dict:
- """自动注册指标函数"""
- registry = {}
- for metric_name in self.metrics:
- func_name = f"calculate_{metric_name.lower()}"
- try:
- registry[metric_name] = globals()[func_name]
- except KeyError:
- self.logger.error(f"未实现指标函数: {func_name}")
- return registry
-
- def batch_execute(self) -> dict:
- """批量执行指标计算"""
- results = {}
- for name, func in self._registry.items():
- try:
- result = func(self.data)
- results.update(result)
- # 新增:将每个指标的结果写入日志
- self.logger.info(f'舒适性指标[{name}]计算结果: {result}')
- except Exception as e:
- self.logger.error(f"{name} 执行失败: {str(e)}", exc_info=True)
- results[name] = None
- self.logger.info(f'舒适性指标计算结果:{results}')
- return results
- class ComfortCalculator:
- """舒适性指标计算类 - 提供核心计算功能"""
-
- def __init__(self, data_processed):
- self.data_processed = data_processed
- self.logger = LogManager().get_logger()
-
- self.data = data_processed.ego_data
- self.ego_df = pd.DataFrame()
- self.discomfort_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
-
- self.time_list = self.data['simTime'].values.tolist()
- self.frame_list = self.data['simFrame'].values.tolist()
-
- self.zigzag_count = 0
- self.shake_count = 0
- self.cadence_count = 0
- self.slam_brake_count = 0
- self.slam_accel_count = 0
-
- self.zigzag_time_list = []
- self.zigzag_stre_list = []
- self.cur_ego_path_list = []
- self.curvature_list = []
-
- self._initialize_data()
-
- def _initialize_data(self):
- """初始化数据"""
- self.ego_df = self.data[COMFORT_INFO].copy()
- self.df = self.ego_df.reset_index(drop=True)
- self._prepare_comfort_parameters()
-
- def _prepare_comfort_parameters(self):
- """准备舒适性计算所需参数"""
- # 计算加减速阈值
- self.ego_df['ip_acc'] = self.ego_df['v'].apply(get_interpolation, point1=[18, 4], point2=[72, 2])
- self.ego_df['ip_dec'] = self.ego_df['v'].apply(get_interpolation, point1=[18, -5], point2=[72, -3.5])
- self.ego_df['slam_brake'] = (self.ego_df['lon_acc'] - self.ego_df['ip_dec']).apply(
- lambda x: 1 if x < 0 else 0)
- self.ego_df['slam_accel'] = (self.ego_df['lon_acc'] - self.ego_df['ip_acc']).apply(
- lambda x: 1 if x > 0 else 0)
- self.ego_df['cadence'] = self.ego_df.apply(
- lambda row: self._cadence_process_new(row['lon_acc'], row['ip_acc'], row['ip_dec']), axis=1)
- # 计算曲率相关参数
- self.ego_df['cur_ego_path'] = self.ego_df.apply(self._cal_cur_ego_path, axis=1)
- self.ego_df['curvHor'] = self.ego_df['curvHor'].astype('float')
- self.ego_df['cur_diff'] = (self.ego_df['cur_ego_path'] - self.ego_df['curvHor']).abs()
- self.ego_df['R'] = self.ego_df['curvHor'].apply(lambda x: 10000 if x == 0 else 1 / x)
- self.ego_df['R_ego'] = self.ego_df['cur_ego_path'].apply(lambda x: 10000 if x == 0 else 1 / x)
- self.ego_df['R_diff'] = (self.ego_df['R_ego'] - self.ego_df['R']).abs()
-
- self.cur_ego_path_list = self.ego_df['cur_ego_path'].values.tolist()
- self.curvature_list = self.ego_df['curvHor'].values.tolist()
-
- def _cal_cur_ego_path(self, row):
- """计算车辆轨迹曲率"""
- try:
- divide = (row['speedX'] ** 2 + row['speedY'] ** 2) ** (3 / 2)
- if not divide:
- res = None
- else:
- res = (row['speedX'] * row['accelY'] - row['speedY'] * row['accelX']) / divide
- except:
- res = None
- return res
-
- def _peak_valley_determination(self, df):
- """确定角速度的峰谷"""
- peaks, _ = scipy.signal.find_peaks(df['speedH'], height=0.01, distance=1, prominence=0.01)
- valleys, _ = scipy.signal.find_peaks(-df['speedH'], height=0.01, distance=1, prominence=0.01)
- peak_valley = sorted(list(peaks) + list(valleys))
- return peak_valley
-
- def _peak_valley_judgment(self, p_last, p_curr, tw=10000, avg=0.02):
- """判断峰谷是否满足蛇行条件"""
- t_diff = p_curr[0] - p_last[0]
- v_diff = abs(p_curr[1] - p_last[1])
- s = p_curr[1] * p_last[1]
- zigzag_flag = t_diff < tw and v_diff > avg and s < 0
- if zigzag_flag and ([p_last[0], p_curr[0]] not in self.zigzag_time_list):
- self.zigzag_time_list.append([p_last[0], p_curr[0]])
- return zigzag_flag
-
- def _cadence_process_new(self, lon_acc, ip_acc, ip_dec):
- """处理顿挫数据"""
- if abs(lon_acc) < 1 or lon_acc > ip_acc or lon_acc < ip_dec:
- return np.nan
- elif abs(lon_acc) == 0:
- return 0
- elif lon_acc > 0 and lon_acc < ip_acc:
- return 1
- elif lon_acc < 0 and lon_acc > ip_dec:
- return -1
- else:
- return 0
-
- @peak_valley_decorator
- def _zigzag_count_func(self, p_curr, p_last, flag=True):
- """计算蛇行次数"""
- if flag:
- self.zigzag_count += 1
- else:
- self.zigzag_count += 0
-
- @peak_valley_decorator
- def _cal_zigzag_strength(self, p_curr, p_last, flag=True):
- """计算蛇行强度"""
- if flag:
- v_diff = abs(p_curr[1] - p_last[1])
- t_diff = p_curr[0] - p_last[0]
- self.zigzag_stre_list.append(v_diff / t_diff) # 平均角加速度
- else:
- self.zigzag_stre_list = []
-
- def calculate_zigzag_count(self):
- """计算蛇行指标"""
- self._zigzag_count_func()
- return self.zigzag_count
-
- def calculate_shake_count(self):
- """计算晃动指标"""
- self._shake_detector()
- return self.shake_count
-
- def calculate_cadence_count(self):
- """计算顿挫指标"""
- self._cadence_detector()
- return self.cadence_count
-
- def calculate_slam_brake_count(self):
- """计算急刹车指标"""
- self._slam_brake_detector()
- return self.slam_brake_count
-
- def calculate_slam_accel_count(self):
- """计算急加速指标"""
- self._slam_accel_detector()
- return self.slam_accel_count
-
- def _shake_detector(self, Cr_diff=0.05, T_diff=0.39):
- """晃动检测器"""
- time_list = []
- frame_list = []
- df = self.ego_df.copy()
- df = df[df['cur_diff'] > Cr_diff]
- df['frame_ID_diff'] = df['simFrame'].diff()
- filtered_df = df[df.frame_ID_diff > T_diff]
- row_numbers = filtered_df.index.tolist()
- cut_column = pd.cut(df.index, bins=row_numbers)
- grouped = df.groupby(cut_column)
- dfs = {}
- for name, group in grouped:
- dfs[name] = group.reset_index(drop=True)
- for name, df_group in dfs.items():
- # 直道,未主动换道
- df_group['curvHor'] = df_group['curvHor'].abs()
- df_group_straight = df_group[(df_group.lightMask == 0) & (df_group.curvHor < 0.001)]
- if not df_group_straight.empty:
- time_list.extend(df_group_straight['simTime'].values)
- frame_list.extend(df_group_straight['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 打转向灯,道路为直道
- df_group_change_lane = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'] < 0.001)]
- df_group_change_lane_data = df_group_change_lane[df_group_change_lane.cur_diff > Cr_diff + 0.2]
- if not df_group_change_lane_data.empty:
- time_list.extend(df_group_change_lane_data['simTime'].values)
- frame_list.extend(df_group_change_lane_data['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 转弯,打转向灯
- df_group_turn = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'].abs() > 0.001)]
- df_group_turn_data = df_group_turn[df_group_turn.cur_diff.abs() > Cr_diff + 0.1]
- if not df_group_turn_data.empty:
- time_list.extend(df_group_turn_data['simTime'].values)
- frame_list.extend(df_group_turn_data['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 分组处理
- TIME_RANGE = 1
- t_list = time_list
- f_list = frame_list
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
-
- if len(f_list) > 0:
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= TIME_RANGE:
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- # 输出图表值
- shake_time = [[g[0], g[-1]] for g in group_time]
- shake_frame = [[g[0], g[-1]] for g in group_frame]
- self.shake_count = len(shake_time)
- if shake_time:
- time_df = pd.DataFrame(shake_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(shake_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'shake'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- return time_list
-
- def _cadence_detector(self):
- """顿挫检测器"""
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'cadence']].copy()
- time_list = data['simTime'].values.tolist()
- data = data[data['cadence'] != np.nan]
- data['cadence_diff'] = data['cadence'].diff()
- data.dropna(subset='cadence_diff', inplace=True)
- data = data[data['cadence_diff'] != 0]
- t_list = data['simTime'].values.tolist()
- f_list = data['simFrame'].values.tolist()
- TIME_RANGE = 1
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= TIME_RANGE: # 特征点相邻一秒内的,算作同一组顿挫
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫
- group_frame = [g for g in group_frame if len(g) >= 1]
- # 输出图表值
- cadence_time = [[g[0], g[-1]] for g in group_time]
- cadence_frame = [[g[0], g[-1]] for g in group_frame]
- if cadence_time:
- time_df = pd.DataFrame(cadence_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(cadence_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'cadence'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- # 将顿挫组的起始时间为组重新统计时间
- cadence_time_list = [time for pair in cadence_time for time in time_list if pair[0] <= time <= pair[1]]
- stre_list = []
- freq_list = []
- for g in group_time:
- # calculate strength
- g_df = data[data['simTime'].isin(g)]
- strength = g_df['lon_acc'].abs().mean()
- stre_list.append(strength)
- # calculate frequency
- cnt = len(g)
- t_start = g_df['simTime'].iloc[0]
- t_end = g_df['simTime'].iloc[-1]
- t_delta = t_end - t_start
- frequency = cnt / t_delta
- freq_list.append(frequency)
- self.cadence_count = len(freq_list)
- cadence_stre = sum(stre_list) / len(stre_list) if stre_list else 0
- return cadence_time_list
-
- def _slam_brake_detector(self):
- """急刹车检测器"""
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'ip_dec', 'slam_brake']].copy()
- res_df = data[data['slam_brake'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- TIME_RANGE = 1
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or f_list[i] - f_list[i - 1] <= TIME_RANGE: # 连续帧的算作同一组急刹
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹
- group_frame = [g for g in group_frame if len(g) >= 2]
- # 输出图表值
- slam_brake_time = [[g[0], g[-1]] for g in group_time]
- slam_brake_frame = [[g[0], g[-1]] for g in group_frame]
- if slam_brake_time:
- time_df = pd.DataFrame(slam_brake_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(slam_brake_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'slam_brake'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_brake_count = len(group_time)
- return time_list
-
- def _slam_accel_detector(self):
- """急加速检测器"""
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'ip_acc', 'slam_accel']].copy()
- res_df = data.loc[data['slam_accel'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2]
- group_frame = [g for g in group_frame if len(g) >= 2]
- # 输出图表值
- slam_accel_time = [[g[0], g[-1]] for g in group_time]
- slam_accel_frame = [[g[0], g[-1]] for g in group_frame]
- if slam_accel_time:
- time_df = pd.DataFrame(slam_accel_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(slam_accel_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'slam_accel'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_accel_count = len(group_time)
- return time_list
- class ComfortManager:
- """舒适性指标计算主类"""
-
- def __init__(self, data_processed):
- self.data = data_processed
- self.logger = LogManager().get_logger()
- self.registry = ComfortRegistry(self.data)
- def report_statistic(self):
- """生成舒适性评分报告"""
- comfort_result = self.registry.batch_execute()
-
- return comfort_result
- if __name__ == '__main__':
- case_name = 'ICA'
- mode_label = 'PGVIL'
-
- data = data_process.DataPreprocessing(case_name, mode_label)
- comfort_instance = ComfortManager(data)
-
- try:
- comfort_result = comfort_instance.report_statistic()
- result = {'comfort': comfort_result}
- print(result)
- except Exception as e:
- print(f"An error occurred in Comfort.report_statistic: {e}")
|