12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn), yangzihao(yangzihao@china-icv.cn)
- @Data: 2023/06/25
- @Last Modified: 2025/04/25
- @Summary: Comfort metrics
- """
- import sys
- import math
- import scipy.signal
- import pandas as pd
- import numpy as np
- import os
- from pathlib import Path
- from typing import Dict, List, Any, Optional, Callable, Union, Tuple
- from modules.lib.score import Score
- from modules.lib.common import get_interpolation, get_frame_with_time
- from modules.lib import data_process
- from modules.lib.log_manager import LogManager
- from modules.lib.chart_generator import generate_comfort_chart_data
- # 更新COMFORT_INFO列表,添加车辆坐标系下的速度和加速度字段
- COMFORT_INFO = [
- "simTime",
- "simFrame",
- "speedX",
- "speedY",
- "accelX",
- "accelY",
- "curvHor",
- "lightMask",
- "v",
- "lat_acc",
- "lon_acc",
- "time_diff",
- "lon_acc_diff",
- "lon_acc_roc",
- "speedH",
- "accelH",
- "posH", # 航向角字段
- "lon_v_vehicle", # 车辆坐标系下的纵向速度
- "lat_v_vehicle", # 车辆坐标系下的横向速度
- "lon_acc_vehicle", # 车辆坐标系下的纵向加速度
- "lat_acc_vehicle" # 车辆坐标系下的横向加速度
- ]
- # ----------------------
- # 独立指标计算函数
- # ----------------------
- def motionComfortIndex(data_processed) -> dict:
- """计算运动舒适度指数"""
- comfort = Comfort(data_processed)
- index = comfort.calculate_motion_comfort_index()
- return {"motionComfortIndex": float(index)}
- def rideQualityScore(data_processed) -> dict:
- """计算乘坐质量评分"""
- comfort = Comfort(data_processed)
- score = comfort.calculate_ride_quality_score()
- return {"rideQualityScore": float(score)}
-
- def calculate_motionsickness(data_processed) -> dict:
- """计算晕车概率指标"""
- comfort = ComfortCalculator(data_processed)
- motion_sickness_prob = comfort.calculate_motion_sickness_probability()
- return {"motionSickness": float(motion_sickness_prob)}
- def calculate_vdv(data_processed) -> dict:
- """计算振动剂量值(Vibration Dose Value, VDV)指标"""
- comfort = ComfortCalculator(data_processed)
- vdv_value = comfort.calculate_vdv()
- return {"vdv": float(vdv_value)}
- def calculate_ava_vav(data_processed) -> dict:
- """计算多维度综合加权加速度"""
- comfort = ComfortCalculator(data_processed)
- ava_vav_value = comfort.calculate_ava_vav()
- return {"ava_vav": float(ava_vav_value)}
- def calculate_msdv(data_processed) -> dict:
- """计算晕动剂量值(MSDV)指标"""
- comfort = ComfortCalculator(data_processed)
- msdv_value = comfort.calculate_msdv()
- return {"msdv": float(msdv_value)}
-
- def calculate_zigzag(data_processed) -> dict:
- """计算蛇行指标"""
- comfort = ComfortCalculator(data_processed)
- zigzag_count = comfort.calculate_zigzag_count()
- return {"zigzag": float(zigzag_count)}
- def calculate_shake(data_processed) -> dict:
- """计算晃动指标"""
- comfort = ComfortCalculator(data_processed)
- shake_count = comfort.calculate_shake_count()
- return {"shake": float(shake_count)}
- def calculate_cadence(data_processed) -> dict:
- """计算顿挫指标"""
- comfort = ComfortCalculator(data_processed)
- cadence_count = comfort.calculate_cadence_count()
- return {"cadence": float(cadence_count)}
- def calculate_slambrake(data_processed) -> dict:
- """计算急刹车指标"""
- comfort = ComfortCalculator(data_processed)
- slam_brake_count = comfort.calculate_slam_brake_count()
- return {"slamBrake": float(slam_brake_count)}
- def calculate_slamaccelerate(data_processed) -> dict:
- """计算急加速指标"""
- comfort = ComfortCalculator(data_processed)
- slam_accel_count = comfort.calculate_slam_accel_count()
- return {"slamAccelerate": float(slam_accel_count)}
- # 装饰器保持不变
- def peak_valley_decorator(method):
- def wrapper(self, *args, **kwargs):
- peak_valley = self._peak_valley_determination(self.df)
- pv_list = self.df.loc[peak_valley, ['simTime', 'speedH']].values.tolist()
- if len(pv_list) != 0:
- flag = True
- p_last = pv_list[0]
- for i in range(1, len(pv_list)):
- p_curr = pv_list[i]
- if self._peak_valley_judgment(p_last, p_curr):
- # method(self, p_curr, p_last)
- method(self, p_curr, p_last, flag, *args, **kwargs)
- else:
- p_last = p_curr
- return method
- else:
- flag = False
- p_curr = [0, 0]
- p_last = [0, 0]
- method(self, p_curr, p_last, flag, *args, **kwargs)
- return method
- return wrapper
- class ComfortRegistry:
- """舒适性指标注册器"""
-
- def __init__(self, data_processed):
- self.logger = LogManager().get_logger() # 获取全局日志实例
- self.data = data_processed
- self.comfort_config = data_processed.comfort_config["comfort"]
- self.metrics = self._extract_metrics(self.comfort_config)
- self._registry = self._build_registry()
- self.output_dir = None # 图表数据输出目录
-
- def _extract_metrics(self, config_node: dict) -> list:
- """DFS遍历提取指标"""
- metrics = []
- def _recurse(node):
- if isinstance(node, dict):
- if 'name' in node and not any(isinstance(v, dict) for v in node.values()):
- metrics.append(node['name'])
- for v in node.values():
- _recurse(v)
- _recurse(config_node)
- self.logger.info(f'评比的舒适性指标列表:{metrics}')
- return metrics
-
- def _build_registry(self) -> dict:
- """自动注册指标函数"""
- registry = {}
- for metric_name in self.metrics:
- func_name = f"calculate_{metric_name.lower()}"
- try:
- registry[metric_name] = globals()[func_name]
- except KeyError:
- self.logger.error(f"未实现指标函数: {func_name}")
- return registry
-
- def batch_execute(self) -> dict:
- """批量执行指标计算"""
- results = {}
- for name, func in self._registry.items():
- try:
- result = func(self.data)
- results.update(result)
- # 新增:将每个指标的结果写入日志
- self.logger.info(f'舒适性指标[{name}]计算结果: {result}')
- except Exception as e:
- self.logger.error(f"{name} 执行失败: {str(e)}", exc_info=True)
- results[name] = None
- self.logger.info(f'舒适性指标计算结果:{results}')
- return results
- class ComfortCalculator:
- """舒适性指标计算类 - 提供核心计算功能"""
-
- def generate_metric_chart(self, metric_name: str) -> None:
- """
- 生成指标图表
-
- Args:
- metric_name: 指标名称
- """
- # 设置输出目录
- if not hasattr(self, 'output_dir') or not self.output_dir:
- self.output_dir = os.path.join(os.getcwd(), 'data')
- os.makedirs(self.output_dir, exist_ok=True)
-
- # 调用chart_generator中的函数生成图表
- chart_path = generate_comfort_chart_data(self, metric_name, self.output_dir)
- if chart_path:
- self.logger.info(f"{metric_name}图表已生成: {chart_path}")
-
- def __init__(self, data_processed):
- self.data_processed = data_processed
- self.logger = LogManager().get_logger()
-
- self.data = data_processed.ego_data
- self.ego_df = pd.DataFrame()
- self.discomfort_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
-
- # 统计指标
- self.calculated_value = {
- 'zigzag': 0,
- 'shake': 0,
- 'cadence': 0,
- 'slamBrake': 0,
- 'slamAccelerate': 0,
- 'ava_vav': 0, # 添加新指标的默认值
- 'msdv': 0, # 添加MSDV指标的默认值
- 'motionSickness': 0, # 添加晕车概率指标的默认值
- 'vdt:': 0,
- 'motionComfortIndex': 0, # 新增指标
- 'rideQualityScore': 0 # 新增指标
- }
-
- self.time_list = self.data['simTime'].values.tolist()
- self.frame_list = self.data['simFrame'].values.tolist()
-
- self.zigzag_count = 0
- self.shake_count = 0
- self.cadence_count = 0
- self.slam_brake_count = 0
- self.slam_accel_count = 0
-
- self.zigzag_time_list = []
- self.zigzag_stre_list = []
- self.shake_events = [] # 用于存储晃动事件数据
-
- self._initialize_data()
-
- def _initialize_data(self):
- """初始化数据"""
- self.ego_df = self.data[COMFORT_INFO].copy()
- self.df = self.ego_df.reset_index(drop=True)
- self._prepare_comfort_parameters()
-
- def _prepare_comfort_parameters(self):
- """准备舒适性计算所需参数"""
- # 检查是否已经有车身坐标系下的加速度和速度数据
- # 这些数据应该在data_process.py的process_ego_data方法中已经计算好
- if 'lon_acc_vehicle' in self.ego_df.columns and 'lat_acc_vehicle' in self.ego_df.columns:
- # 直接使用已转换的数据
- self.logger.info("使用data_process中预先计算的车身坐标系加速度和速度数据")
- elif 'posH' in self.ego_df.columns:
- # 如果没有预先计算的数据,但有航向角,则进行计算
- # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
- self.logger.warning("未找到预先计算的车身坐标系数据,进行实时计算")
- self.ego_df['heading_rad'] = np.deg2rad(90 - self.ego_df['posH']) # 转换为与x轴的夹角
-
- # 转换加速度到车身坐标系 - 使用与data_process.py相同的转换方法
- self.ego_df['lon_acc_vehicle'] = self.ego_df['accelX'] * np.cos(self.ego_df['heading_rad']) + \
- self.ego_df['accelY'] * np.sin(self.ego_df['heading_rad'])
- self.ego_df['lat_acc_vehicle'] = -self.ego_df['accelX'] * np.sin(self.ego_df['heading_rad']) + \
- self.ego_df['accelY'] * np.cos(self.ego_df['heading_rad'])
-
- # 转换速度到车身坐标系
- self.ego_df['lon_v_vehicle'] = self.ego_df['speedX'] * np.cos(self.ego_df['heading_rad']) + \
- self.ego_df['speedY'] * np.sin(self.ego_df['heading_rad'])
- self.ego_df['lat_v_vehicle'] = -self.ego_df['speedX'] * np.sin(self.ego_df['heading_rad']) + \
- self.ego_df['speedY'] * np.cos(self.ego_df['heading_rad'])
- else:
- self.logger.warning("缺少航向角数据,无法将数据转换为车身坐标系")
-
- # 计算加减速阈值 - 使用车辆坐标系下的纵向速度代替合速度
- speed_field = 'lon_v_vehicle' if 'lon_v_vehicle' in self.ego_df.columns else 'v'
- self.logger.info(f"加减速阈值计算使用的速度字段: {speed_field}")
-
- self.ego_df['ip_acc'] = self.ego_df[speed_field].apply(get_interpolation, point1=[18, 4], point2=[72, 2])
- self.ego_df['ip_dec'] = self.ego_df[speed_field].apply(get_interpolation, point1=[18, -5], point2=[72, -3.5])
-
- # 使用车辆坐标系下的纵向加速度计算急刹车和急加速
- acc_field = 'lon_acc_vehicle' if 'lon_acc_vehicle' in self.ego_df.columns else 'lon_acc'
- self.logger.info(f"急刹车和急加速检测使用的加速度字段: {acc_field}")
-
- # 使用车辆坐标系下的纵向加速度与阈值比较,判断急刹车和急加速
- self.ego_df['slam_brake'] = (self.ego_df[acc_field] - self.ego_df['ip_dec']).apply(
- lambda x: 1 if x < 0 else 0)
- self.ego_df['slam_accel'] = (self.ego_df[acc_field] - self.ego_df['ip_acc']).apply(
- lambda x: 1 if x > 0 else 0)
-
- # 确保cadence列使用车辆坐标系下的纵向加速度计算
- self.ego_df['cadence'] = self.ego_df.apply(
- lambda row: self._cadence_process_new(row[acc_field], row['ip_acc'], row['ip_dec']), axis=1)
- def _apply_frequency_weighting(self, acceleration_data, weighting_type='Wk', fs=100):
- """应用ISO 2631-1:1997标准的频率加权滤波
-
- 参数:
- acceleration_data: 加速度时间序列数据
- weighting_type: 加权类型,可选值包括:
- - 'Wk': 垂直方向(Z轴)加权
- - 'Wd': 水平方向(X和Y轴)加权
- - 'Wf': 运动病相关加权
- fs: 采样频率(Hz)
-
- 返回:
- 加权后的加速度数据
- """
- # 检查数据有效性
- if acceleration_data.empty or acceleration_data.isna().all():
- return acceleration_data
-
- # 根据ISO 2631-1:1997标准设计滤波器
- # 这些参数来自标准文档,用于构建数字滤波器
- if weighting_type == 'Wk': # 垂直方向(Z轴)
- # Wk滤波器参数
- f1 = 0.4
- f2 = 100.0
- f3 = 12.5
- f4 = 12.5
- Q1 = 0.63
- Q2 = 0.5
- Q3 = 0.63
- Q4 = 0.63
- K = 0.4
- elif weighting_type == 'Wd': # 水平方向(X和Y轴)
- # Wd滤波器参数
- f1 = 0.4
- f2 = 100.0
- f3 = 2.0
- f4 = 2.0
- Q1 = 0.63
- Q2 = 0.5
- Q3 = 0.63
- Q4 = 0.63
- K = 0.4
- elif weighting_type == 'Wf': # 运动病相关
- # Wf滤波器参数
- f1 = 0.08
- f2 = 0.63
- f3 = 0.25
- f4 = 0.8
- Q1 = 0.63
- Q2 = 0.86
- Q3 = 0.8
- Q4 = 0.8
- K = 1.0
- else:
- self.logger.warning(f"未知的加权类型: {weighting_type},使用原始数据")
- return acceleration_data
-
- # 将频率转换为角频率
- w1 = 2 * np.pi * f1
- w2 = 2 * np.pi * f2
- w3 = 2 * np.pi * f3
- w4 = 2 * np.pi * f4
-
- # 设计高通滤波器(s域)
- b1 = [K * w1**2, 0]
- a1 = [1, w1/Q1, w1**2]
-
- # 设计低通滤波器(s域)
- b2 = [K, 0, 0]
- a2 = [1, w2/Q2, w2**2]
-
- # 设计加速度-速度转换滤波器(s域)
- b3 = [K, 0]
- a3 = [1, w3/Q3, w3**2]
-
- # 设计上升滤波器(s域)
- b4 = [K, 0, 0]
- a4 = [1, w4/Q4, w4**2]
-
- # 使用双线性变换将s域滤波器转换为z域
- b1_z, a1_z = scipy.signal.bilinear(b1, a1, fs)
- b2_z, a2_z = scipy.signal.bilinear(b2, a2, fs)
- b3_z, a3_z = scipy.signal.bilinear(b3, a3, fs)
- b4_z, a4_z = scipy.signal.bilinear(b4, a4, fs)
-
- # 应用滤波器链
- data_np = acceleration_data.to_numpy()
- filtered_data = scipy.signal.lfilter(b1_z, a1_z, data_np)
- filtered_data = scipy.signal.lfilter(b2_z, a2_z, filtered_data)
- filtered_data = scipy.signal.lfilter(b3_z, a3_z, filtered_data)
- filtered_data = scipy.signal.lfilter(b4_z, a4_z, filtered_data)
-
- return pd.Series(filtered_data, index=acceleration_data.index)
-
- def calculate_vdv(self):
- """计算振动剂量值(Vibration Dose Value, VDV)
-
- VDV更强调"冲击"或"突发"振动事件对整体舒适度的影响,
- 常用于评估包含较多瞬态冲击或颠簸的振动信号。
-
- 计算公式: VDV = (∫[0,T] |a_ω(t)|⁴ dt)^(1/4)
-
- 相较于MSDV的二次累积,VDV的四次累积使其对高幅值短时冲击更为敏感,
- 能够更准确地反映剧烈颠簸对乘员舒适度的不利影响。
- 如你正在开发自动驾驶体验分析模块,建议:
- MSDV → 用于标记低频摇摆造成的晕车风险
- VDV → 用于标记车内座椅或底盘振动强度(比如悬挂问题、路面冲击)
-
- Returns:
- float: 振动剂量值
- """
- # 获取数据
- df = self.ego_df.copy()
-
- # 确保有必要的列
- if 'accelX' not in df.columns or 'accelY' not in df.columns:
- self.logger.warning("缺少计算振动剂量值所需的数据列")
- return self.calculated_value['vdv']
-
- # 将东北天坐标系下的加速度转换为车身坐标系下的加速度
- if 'posH' not in df.columns:
- self.logger.warning("缺少航向角数据,无法进行坐标转换")
- return self.calculated_value['vdv']
-
- # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
- df['posH_rad'] = np.radians(df['posH'])
-
- # 转换加速度到车身坐标系
- df['a_x_body'] = df['accelX'] * np.sin(df['posH_rad']) + df['accelY'] * np.cos(df['posH_rad'])
- df['a_y_body'] = df['accelX'] * np.cos(df['posH_rad']) - df['accelY'] * np.sin(df['posH_rad'])
-
- # Z方向加速度,如果没有则假设为0
- df['a_z_body'] = df['accelZ'] if 'accelZ' in df.columns else pd.Series(np.zeros(len(df)))
-
- # 计算时间差
- df['time_diff'] = df['simTime'].diff().fillna(0)
-
- # 应用ISO 2631-1:1997标准的频率加权滤波
- # 估计采样频率 - 假设数据是均匀采样的
- if len(df) > 1:
- time_diff = df['simTime'].diff().median()
- fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
- else:
- fs = 100 # 默认采样频率
-
- # 对各方向加速度应用适当的频率加权
- # 对于VDV评估,使用与MSDV相同的加权滤波器
- a_x_weighted = self._apply_frequency_weighting(df['a_x_body'], 'Wd', fs) # 水平方向使用Wd
- a_y_weighted = self._apply_frequency_weighting(df['a_y_body'], 'Wd', fs) # 水平方向使用Wd
- a_z_weighted = self._apply_frequency_weighting(df['a_z_body'], 'Wk', fs) # 垂直方向使用Wk
-
- # 计算加权均方根值 (r.m.s.)
- a_x_rms = np.sqrt(np.mean(a_x_weighted**2))
- a_y_rms = np.sqrt(np.mean(a_y_weighted**2))
- a_z_rms = np.sqrt(np.mean(a_z_weighted**2))
-
- # 记录r.m.s.值用于参考
- self.logger.info(f"X方向加权均方根值: {a_x_rms}")
- self.logger.info(f"Y方向加权均方根值: {a_y_rms}")
- self.logger.info(f"Z方向加权均方根值: {a_z_rms}")
-
- # 计算VDV - 对加速度四次方进行时间积分,再开四次方根
- # 对于X方向(前后方向)
- vdv_x = np.power(np.sum(np.power(np.abs(a_x_weighted), 4) * df['time_diff']), 0.25)
-
- # 对于Y方向(左右方向)
- vdv_y = np.power(np.sum(np.power(np.abs(a_y_weighted), 4) * df['time_diff']), 0.25)
-
- # 对于Z方向(上下方向)
- vdv_z = np.power(np.sum(np.power(np.abs(a_z_weighted), 4) * df['time_diff']), 0.25)
-
- # 综合VDV - 可以使用向量和或加权和
- # 根据ISO 2631标准,垂直方向(Z)的权重通常更高
- vdv = np.sqrt(vdv_x**2 + vdv_y**2 + (1.4 * vdv_z)**2)
-
- # 记录计算结果
- self.calculated_value['vdv'] = vdv
- self.logger.info(f"振动剂量值(VDV)计算结果: {vdv}")
- self.logger.info(f"X方向VDV: {vdv_x}, Y方向VDV: {vdv_y}, Z方向VDV: {vdv_z}")
-
- return vdv
- def calculate_motion_sickness_probability(self):
- """计算基于运动参数的晕车概率模型
-
- 该模型综合考虑三轴加速度和加加速度(Jerk)对乘客晕车感的影响,
- 通过非线性指数函数将计算结果映射到0-100%的概率范围。
-
- 计算公式: P = 100 * [1 - exp(-(α*(ax²+ay²+az²) + β*Jerk_RMS) / γ)]
-
- 其中:
- - ax, ay, az: 三轴加速度,表征车辆纵向、横向、垂向运动强度
- - Jerk_RMS: 加速度变化率的均方根值,反映运动突兀性
- - α: 加速度权重(默认0.1 s⁴/m²)
- - β: Jerk权重(默认0.5 s²/m²)
- - γ: 归一化因子(默认10 m²/s⁴)
-
- Returns:
- float: 晕车概率(0-100%)
- 晕车概率 (%) 晕车程度分级 建议动作
- 0 - 10% 无不适感(Comfortable) 无需干预
- 10% - 30% 轻度不适(Slight) 可接受
- 30% - 50% 中度不适(Moderate) 需关注驾驶方式
- > 50% 明显不适(Discomfort) 应考虑优化轨迹、减速、减小加加速度变化率
- """
- # 获取数据
- df = self.ego_df.copy()
-
- # 确保有必要的列
- if 'accelX' not in df.columns or 'accelY' not in df.columns:
- self.logger.warning("缺少计算晕车概率所需的数据列")
- return self.calculated_value.get('motionSickness', 0)
-
- # 将东北天坐标系下的加速度转换为车身坐标系下的加速度
- if 'posH' not in df.columns:
- self.logger.warning("缺少航向角数据,无法进行坐标转换")
- return self.calculated_value.get('motionSickness', 0)
-
- # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
- df['posH_rad'] = np.radians(df['posH'])
-
- # 转换加速度到车身坐标系
- df['a_x_body'] = df['accelX'] * np.sin(df['posH_rad']) + df['accelY'] * np.cos(df['posH_rad'])
- df['a_y_body'] = df['accelX'] * np.cos(df['posH_rad']) - df['accelY'] * np.sin(df['posH_rad'])
-
- # Z方向加速度,如果没有则假设为0
- df['a_z_body'] = df['accelZ'] if 'accelZ' in df.columns else pd.Series(np.zeros(len(df)))
-
- # 计算时间差
- df['time_diff'] = df['simTime'].diff().fillna(0)
-
- # 应用ISO 2631-1:1997标准的频率加权滤波
- # 估计采样频率 - 假设数据是均匀采样的
- if len(df) > 1:
- time_diff = df['simTime'].diff().median()
- fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
- else:
- fs = 100 # 默认采样频率
-
- # 对各方向加速度应用适当的频率加权
- a_x_weighted = self._apply_frequency_weighting(df['a_x_body'], 'Wf', fs) # 使用Wf滤波器(晕动相关)
- a_y_weighted = self._apply_frequency_weighting(df['a_y_body'], 'Wf', fs)
- a_z_weighted = self._apply_frequency_weighting(df['a_z_body'], 'Wf', fs)
-
- # 计算加加速度(Jerk) - 加速度的导数
- # 使用中心差分法计算导数
- df['jerk_x'] = a_x_weighted.diff() / df['time_diff']
- df['jerk_y'] = a_y_weighted.diff() / df['time_diff']
- df['jerk_z'] = a_z_weighted.diff() / df['time_diff']
-
- # 填充NaN值
- df[['jerk_x', 'jerk_y', 'jerk_z']] = df[['jerk_x', 'jerk_y', 'jerk_z']].fillna(0)
-
- # 计算Jerk的均方根值(RMS)
- jerk_squared_sum = df['jerk_x']**2 + df['jerk_y']**2 + df['jerk_z']**2
- jerk_rms = np.sqrt(np.mean(jerk_squared_sum))
-
- # 计算加速度平方和的均值
- accel_squared_sum = a_x_weighted**2 + a_y_weighted**2 + a_z_weighted**2
- accel_squared_mean = np.mean(accel_squared_sum)
-
- # 设置模型参数
- alpha = 0.1 # 加速度权重(s⁴/m²)
- beta = 0.5 # Jerk权重(s²/m²)
- gamma = 10.0 # 归一化因子(m²/s⁴)
-
- # 计算晕车概率
- acceleration_term = alpha * accel_squared_mean
- jerk_term = beta * jerk_rms
- score = (acceleration_term + jerk_term) / gamma
- probability = 100 * (1 - np.exp(-score))
-
- # 限制在0-100%范围内
- probability = np.clip(probability, 0, 100)
-
- # 记录计算结果
- self.calculated_value['motionSickness'] = probability
- self.logger.info(f"晕车概率(Motion Sickness Probability)计算结果: {probability:.2f}%")
- self.logger.info(f"加速度平方和均值: {accel_squared_mean:.4f} m²/s⁴, Jerk均方根值: {jerk_rms:.4f} m/s³")
-
- return probability
- def calculate_motion_comfort_index(self):
- """计算运动舒适度指数
-
- 该指数综合考虑加速度、加加速度和角速度对乘客舒适感的影响,
- 通过加权平均的方式得出一个0-10的舒适度评分,其中10表示最舒适。
-
- Returns:
- float: 运动舒适度指数(0-10)
- | 舒适指数 `comfort_index` | 等级 | 描述 |
- | -------------------- | ---- | ------------ |
- | **8 - 10** | 非常舒适 | 几乎无晃动 |
- | **6 - 8** | 舒适 | 偶有轻微晃动 |
- | **4 - 6** | 一般 | 有一定晃动感 |
- | **2 - 4** | 不适 | 明显晃动、影响乘坐感受 |
- | **0 - 2** | 极度不适 | 强烈晃动,需优化控制系统 |
- """
- # 获取数据
- df = self.ego_df.copy()
-
- # 确保有必要的列
- if 'accelX' not in df.columns or 'accelY' not in df.columns:
- self.logger.warning("缺少计算运动舒适度指数所需的数据列")
- return self.calculated_value.get('motionComfortIndex', 5.0)
-
- # 计算合成加速度
- df['accel_magnitude'] = np.sqrt(df['accelX']**2 + df['accelY']**2)
- if 'accelZ' in df.columns:
- df['accel_magnitude'] = np.sqrt(df['accel_magnitude']**2 + df['accelZ']**2)
-
- # 计算加加速度(Jerk)
- df['time_diff'] = df['simTime'].diff().fillna(0.01)
- df['jerk_x'] = df['accelX'].diff() / df['time_diff']
- df['jerk_y'] = df['accelY'].diff() / df['time_diff']
- df['jerk_magnitude'] = np.sqrt(df['jerk_x']**2 + df['jerk_y']**2)
- if 'accelZ' in df.columns:
- df['jerk_z'] = df['accelZ'].diff() / df['time_diff']
- df['jerk_magnitude'] = np.sqrt(df['jerk_magnitude']**2 + df['jerk_z']**2)
-
- # 计算角速度
- if 'rollRate' in df.columns and 'pitchRate' in df.columns:
- df['angular_velocity'] = np.sqrt(df['rollRate']**2 + df['pitchRate']**2)
- if 'speedH' in df.columns: # 使用航向角速度作为偏航角速度
- df['angular_velocity'] = np.sqrt(df['angular_velocity']**2 + df['speedH']**2)
- else:
- df['angular_velocity'] = 0
-
- # 计算各指标的均方根值
- accel_rms = np.sqrt(np.mean(df['accel_magnitude']**2))
- jerk_rms = np.sqrt(np.mean(df['jerk_magnitude']**2))
- angular_rms = np.sqrt(np.mean(df['angular_velocity']**2))
-
- # 设置阈值和权重
- accel_threshold = 2.0 # m/s²,超过此值舒适度开始下降
- jerk_threshold = 1.0 # m/s³,超过此值舒适度开始下降
- angular_threshold = 0.2 # rad/s,超过此值舒适度开始下降
-
- accel_weight = 0.5 # 加速度权重
- jerk_weight = 0.3 # 加加速度权重
- angular_weight = 0.2 # 角速度权重
-
- # 计算各分量的舒适度得分(0-10)
- accel_score = 10 * np.exp(-max(0, accel_rms - accel_threshold) / accel_threshold)
- jerk_score = 10 * np.exp(-max(0, jerk_rms - jerk_threshold) / jerk_threshold)
- angular_score = 10 * np.exp(-max(0, angular_rms - angular_threshold) / angular_threshold)
-
- # 计算加权平均得分
- comfort_index = (accel_weight * accel_score +
- jerk_weight * jerk_score +
- angular_weight * angular_score)
-
- # 限制在0-10范围内
- comfort_index = np.clip(comfort_index, 0, 10)
-
- # 记录计算结果
- self.calculated_value['motionComfortIndex'] = comfort_index
- self.logger.info(f"运动舒适度指数(Motion Comfort Index)计算结果: {comfort_index:.2f}/10")
- self.logger.info(f"加速度RMS: {accel_rms:.4f} m/s², 加加速度RMS: {jerk_rms:.4f} m/s³, 角速度RMS: {angular_rms:.4f} rad/s")
-
- return comfort_index
-
- def calculate_ride_quality_score(self):
- """计算乘坐质量评分
-
- 该评分基于ISO 2631标准,综合考虑振动频率、振幅和持续时间对人体的影响,
- 评估车辆在不同路况下的乘坐舒适性。
-
- Returns:
- float: 乘坐质量评分(0-100)
- """
- # 获取数据
- df = self.ego_df.copy()
-
- # 确保有必要的列
- if 'accelZ' not in df.columns:
- self.logger.warning("缺少计算乘坐质量评分所需的垂直加速度数据")
- return self.calculated_value.get('rideQualityScore', 70.0)
-
- # 估计采样频率
- if len(df) > 1:
- time_diff = df['simTime'].diff().median()
- fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
- else:
- fs = 100 # 默认采样频率
-
- # 应用ISO 2631-1:1997标准的频率加权滤波
- a_z_weighted = self._apply_frequency_weighting(df['accelZ'], 'Wk', fs)
-
- # 计算垂直方向加速度的均方根值
- a_z_rms = np.sqrt(np.mean(a_z_weighted**2))
-
- # 根据ISO 2631-1:1997标准的舒适度评价
- # < 0.315 m/s² - 不感到不适
- # 0.315-0.63 m/s² - 轻微不适
- # 0.5-1.0 m/s² - 有些不适
- # 0.8-1.6 m/s² - 不适
- # 1.25-2.5 m/s² - 非常不适
- # > 2.0 m/s² - 极度不适
-
- # 将RMS值映射到0-100的评分
- if a_z_rms < 0.315:
- base_score = 90
- elif a_z_rms < 0.63:
- base_score = 80
- elif a_z_rms < 1.0:
- base_score = 70
- elif a_z_rms < 1.6:
- base_score = 60
- elif a_z_rms < 2.5:
- base_score = 40
- else:
- base_score = 20
-
- # 考虑振动持续时间的影响
- duration_factor = min(1.0, 10.0 / (df['simTime'].max() - df['simTime'].min()))
-
- # 考虑振动频率分布的影响
- # 计算功率谱密度
- if len(a_z_weighted) > 50: # 确保有足够的数据点进行频谱分析
- f, psd = self._calculate_psd(a_z_weighted, fs)
-
- # 计算人体敏感频率范围(4-8Hz)的能量占比
- sensitive_mask = (f >= 4) & (f <= 8)
- sensitive_energy = np.sum(psd[sensitive_mask])
- total_energy = np.sum(psd)
-
- frequency_factor = 1.0 - 0.3 * (sensitive_energy / total_energy if total_energy > 0 else 0)
- else:
- frequency_factor = 1.0
-
- # 计算最终评分
- ride_quality_score = base_score * duration_factor * frequency_factor
-
- # 限制在0-100范围内
- ride_quality_score = np.clip(ride_quality_score, 0, 100)
-
- # 记录计算结果
- self.calculated_value['rideQualityScore'] = ride_quality_score
- self.logger.info(f"乘坐质量评分(Ride Quality Score)计算结果: {ride_quality_score:.2f}/100")
- self.logger.info(f"垂直加速度RMS: {a_z_rms:.4f} m/s²")
-
- return ride_quality_score
-
- def _calculate_psd(self, signal, fs):
- """计算信号的功率谱密度
-
- Args:
- signal: 输入信号
- fs: 采样频率
-
- Returns:
- tuple: 频率和对应的功率谱密度
- """
- # 使用Welch方法计算PSD
- from scipy import signal as sp_signal
- f, psd = sp_signal.welch(signal, fs, nperseg=min(256, len(signal)//2))
- return f, psd
- def calculate_ava_vav(self):
- """计算多维度综合加权加速度
-
- 基于ISO 2631-1:1997标准,综合考虑车辆在三个平移方向和三个旋转方向的加速度或角速度
-
- Returns:
- float: 多维度综合加权加速度值
- """
- # 定义各方向的权重系数
- k_x = 1.0 # X方向加速度权重
- k_y = 1.0 # Y方向加速度权重
- k_z = 1.0 # Z方向加速度权重
- k_roll = 0.63 # 横滚角速度权重
- k_pitch = 0.8 # 俯仰角速度权重
- k_yaw = 0.5 # 偏航角速度权重
-
- # 获取数据
- df = self.ego_df.copy()
-
- # 确保有必要的列
- if 'accelX' not in df.columns or 'accelY' not in df.columns:
- self.logger.warning("缺少计算多维度综合加权加速度所需的数据列")
- return self.calculated_value['ava_vav']
-
- # 将东北天坐标系下的加速度转换为车身坐标系下的加速度
- # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
- if 'posH' not in df.columns:
- self.logger.warning("缺少航向角数据,无法进行坐标转换")
- return self.calculated_value['ava_vav']
-
- df['posH_rad'] = np.radians(df['posH'])
-
- # 转换加速度到车身坐标系
- # 注意:posH是航向角,北向为0度,顺时针为正
- # 车身X轴 = 东向*sin(posH) + 北向*cos(posH)
- # 车身Y轴 = 东向*cos(posH) - 北向*sin(posH)
- df['a_x_body'] = df['accelX'] * np.sin(df['posH_rad']) + df['accelY'] * np.cos(df['posH_rad'])
- df['a_y_body'] = df['accelX'] * np.cos(df['posH_rad']) - df['accelY'] * np.sin(df['posH_rad'])
-
- # Z方向加速度,如果没有则假设为0
- df['a_z_body'] = df['accelZ'] if 'accelZ' in df.columns else pd.Series(np.zeros(len(df)))
-
- # 角速度数据,如果没有则使用角速度变化率代替
- # 注意:speedH是航向角速度,需要转换为车身坐标系下的偏航角速度
- omega_roll = df['rollRate'] if 'rollRate' in df.columns else pd.Series(np.zeros(len(df)))
- omega_pitch = df['pitchRate'] if 'pitchRate' in df.columns else pd.Series(np.zeros(len(df)))
- omega_yaw = df['speedH'] # 使用航向角速度作为偏航角速度
-
- # 应用ISO 2631-1:1997标准的频率加权滤波
- # 估计采样频率 - 假设数据是均匀采样的
- if len(df) > 1:
- time_diff = df['simTime'].diff().median()
- fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
- else:
- fs = 100 # 默认采样频率
-
- # 对各方向加速度应用适当的频率加权
- a_x_weighted = self._apply_frequency_weighting(df['a_x_body'], 'Wd', fs)
- a_y_weighted = self._apply_frequency_weighting(df['a_y_body'], 'Wd', fs)
- a_z_weighted = self._apply_frequency_weighting(df['a_z_body'], 'Wk', fs)
-
- # 对角速度也应用适当的频率加权
- # 注意:ISO标准没有直接指定角速度的加权,这里使用简化处理
- omega_roll_weighted = omega_roll # 可以根据需要应用适当的滤波
- omega_pitch_weighted = omega_pitch
- omega_yaw_weighted = omega_yaw
-
- # 计算加权均方根值 (r.m.s.)
- # 对每个方向的加速度/角速度平方后求平均,再开平方根
- a_x_rms = np.sqrt(np.mean(a_x_weighted**2))
- a_y_rms = np.sqrt(np.mean(a_y_weighted**2))
- a_z_rms = np.sqrt(np.mean(a_z_weighted**2))
- omega_roll_rms = np.sqrt(np.mean(omega_roll_weighted**2))
- omega_pitch_rms = np.sqrt(np.mean(omega_pitch_weighted**2))
- omega_yaw_rms = np.sqrt(np.mean(omega_yaw_weighted**2))
-
- # 计算综合加权加速度
- ava_vav = np.sqrt(
- k_x * a_x_rms**2 +
- k_y * a_y_rms**2 +
- k_z * a_z_rms**2 +
- k_roll * omega_roll_rms**2 +
- k_pitch * omega_pitch_rms**2 +
- k_yaw * omega_yaw_rms**2
- )
-
- # 记录计算结果
- self.calculated_value['ava_vav'] = ava_vav
- self.logger.info(f"多维度综合加权加速度(ava_vav)计算结果: {ava_vav}")
-
- return ava_vav
- def calculate_msdv(self):
- """计算晕动剂量值(Motion Sickness Dose Value, MSDV)
-
- MSDV用于量化乘员因持续振动而产生的晕动风险,其物理意义是
- "频率加权后的加速度有效值的平方对时间的累积",
- 能够反映乘员在一定时间内受到振动刺激的总量。
-
- 计算公式: MSDV = √(∫[0,T] a_ω(t)² dt)
-
- Returns:
- float: 晕动剂量值
- """
- # 获取数据
- df = self.ego_df.copy()
-
- # 确保有必要的列
- if 'accelX' not in df.columns or 'accelY' not in df.columns:
- self.logger.warning("缺少计算晕动剂量值所需的数据列")
- return self.calculated_value['msdv']
-
- # 将东北天坐标系下的加速度转换为车身坐标系下的加速度
- if 'posH' not in df.columns:
- self.logger.warning("缺少航向角数据,无法进行坐标转换")
- return self.calculated_value['msdv']
-
- # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
- df['posH_rad'] = np.radians(df['posH'])
-
- # 转换加速度到车身坐标系
- # 注意:posH是航向角,北向为0度,顺时针为正
- # 车身X轴 = 东向*sin(posH) + 北向*cos(posH)
- # 车身Y轴 = 东向*cos(posH) - 北向*sin(posH)
- df['a_x_body'] = df['accelX'] * np.sin(df['posH_rad']) + df['accelY'] * np.cos(df['posH_rad'])
- df['a_y_body'] = df['accelX'] * np.cos(df['posH_rad']) - df['accelY'] * np.sin(df['posH_rad'])
-
- # Z方向加速度,如果没有则假设为0
- df['a_z_body'] = df['accelZ'] if 'accelZ' in df.columns else pd.Series(np.zeros(len(df)))
-
- # 计算时间差
- df['time_diff'] = df['simTime'].diff().fillna(0)
- total_time = df['time_diff'].sum()
-
- # 应用ISO 2631-1:1997标准的频率加权滤波
- # 估计采样频率 - 假设数据是均匀采样的
- if len(df) > 1:
- time_diff = df['simTime'].diff().median()
- fs = 1.0 / time_diff if time_diff > 0 else 100 # 默认100Hz
- else:
- fs = 100 # 默认采样频率
-
- # 对各方向加速度应用适当的频率加权
- # 对于晕动评估,使用Wf加权滤波器
- a_x_weighted = self._apply_frequency_weighting(df['a_x_body'], 'Wf', fs)
- a_y_weighted = self._apply_frequency_weighting(df['a_y_body'], 'Wf', fs)
- a_z_weighted = self._apply_frequency_weighting(df['a_z_body'], 'Wf', fs)
-
- # 先计算加权均方根值 (r.m.s.)
- a_x_rms = np.sqrt(np.sum(a_x_weighted**2 * df['time_diff']) / total_time)
- a_y_rms = np.sqrt(np.sum(a_y_weighted**2 * df['time_diff']) / total_time)
- a_z_rms = np.sqrt(np.sum(a_z_weighted**2 * df['time_diff']) / total_time)
-
- # 记录r.m.s.值用于参考
- self.logger.info(f"X方向加权均方根值: {a_x_rms}")
- self.logger.info(f"Y方向加权均方根值: {a_y_rms}")
- self.logger.info(f"Z方向加权均方根值: {a_z_rms}")
-
- # 计算MSDV - 基于r.m.s.值和总时间
- msdv_x = a_x_rms * np.sqrt(total_time)
- msdv_y = a_y_rms * np.sqrt(total_time)
- msdv_z = a_z_rms * np.sqrt(total_time)
-
- # 综合MSDV - 可以使用向量和或加权和
- # 根据ISO 2631标准,垂直方向(Z)的权重通常更高
- msdv = np.sqrt(msdv_x**2 + msdv_y**2 + (1.4 * msdv_z)**2)
-
- # 记录计算结果
- self.calculated_value['msdv'] = msdv
- self.logger.info(f"晕动剂量值(MSDV)计算结果: {msdv}")
- self.logger.info(f"X方向MSDV: {msdv_x}, Y方向MSDV: {msdv_y}, Z方向MSDV: {msdv_z}")
-
- return msdv
-
- def _cal_cur_ego_path(self, row):
- """计算车辆轨迹曲率"""
- try:
- divide = (row['speedX'] ** 2 + row['speedY'] ** 2) ** (3 / 2)
- if not divide:
- res = None
- else:
- res = (row['speedX'] * row['accelY'] - row['speedY'] * row['accelX']) / divide
- except:
- res = None
- return res
-
- def _peak_valley_determination(self, df):
- """确定角速度的峰谷"""
- peaks, _ = scipy.signal.find_peaks(
- df['speedH'], height=2.3, distance=3,
- prominence=2.3, width=1)
- valleys, _ = scipy.signal.find_peaks(
- -df['speedH'], height=2.3, distance=3,
- prominence=2.3, width=1)
- return sorted(list(peaks) + list(valleys))
-
- def _peak_valley_judgment(self, p_last, p_curr, tw=100, avg=4.6):
- """判断峰谷是否满足蛇行条件"""
- t_diff = p_curr[0] - p_last[0]
- v_diff = abs(p_curr[1] - p_last[1])
- s = p_curr[1] * p_last[1]
- if t_diff < tw and v_diff > avg and s < 0:
- if [p_last[0], p_curr[0]] not in self.zigzag_time_list:
- self.zigzag_time_list.append([p_last[0], p_curr[0]])
- return True
- return False
-
- def _cadence_process_new(self, lon_acc, ip_acc, ip_dec):
- """处理顿挫数据
-
- 使用车辆坐标系下的纵向加速度判断顿挫
-
- Args:
- lon_acc: 纵向加速度(车辆坐标系)
- ip_acc: 加速阈值
- ip_dec: 减速阈值
-
- Returns:
- int/float: nan表示不符合顿挫条件,1表示加速顿挫,-1表示减速顿挫,0表示正常
- """
- if abs(lon_acc) < 1 or lon_acc > ip_acc or lon_acc < ip_dec:
- return np.nan
- elif abs(lon_acc) == 0:
- return 0
- elif lon_acc > 0 and lon_acc < ip_acc:
- return 1
- elif lon_acc < 0 and lon_acc > ip_dec:
- return -1
- else:
- return 0
-
- @peak_valley_decorator
- def _zigzag_detector(self, p_curr, p_last, flag=True):
- """检测蛇行事件"""
- if flag:
- # 记录蛇行事件的起止时间和帧号
- start_time = p_last[0]
- end_time = p_curr[0]
- start_frame = get_frame_with_time(self.time_list, self.frame_list, start_time)
- end_frame = get_frame_with_time(self.time_list, self.frame_list, end_time)
-
- # 计算事件持续时间
- duration = end_time - start_time
-
- # 设置最小持续时间阈值
- min_duration = 0.5 # 秒
-
- if duration >= min_duration:
- # 更新蛇行计数
- self.zigzag_count += 1
-
- # 添加到不舒适事件表
- new_row = pd.DataFrame([{
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': start_frame,
- 'end_frame': end_frame,
- 'type': 'zigzag'
- }])
- self.discomfort_df = pd.concat([self.discomfort_df, new_row], ignore_index=True)
-
- # 记录事件信息到zigzag_time_list
- self.zigzag_time_list.append({
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': start_frame,
- 'end_frame': end_frame,
- 'duration': duration
- })
- else:
- self.zigzag_count += 0
-
- @peak_valley_decorator
- def _cal_zigzag_strength(self, p_curr, p_last, flag=True):
- """计算蛇行强度"""
- if flag:
- v_diff = abs(p_curr[1] - p_last[1])
- t_diff = p_curr[0] - p_last[0]
- if t_diff > 0:
- self.zigzag_stre_list.append(v_diff / t_diff) # 平均角加速度
- else:
- self.zigzag_stre_list = []
-
- def _get_zigzag_times(self):
- """获取所有蛇行时间点"""
- all_times = []
- for time_range in self.zigzag_time_list:
- start, end = time_range
- # 获取这个时间范围内的所有时间点
- times_in_range = self.ego_df[(self.ego_df['simTime'] >= start) &
- (self.ego_df['simTime'] <= end)]['simTime'].tolist()
- all_times.extend(times_in_range)
- return all_times
-
- def calculate_zigzag_count(self):
- """计算蛇行指标"""
- self._zigzag_detector()
-
- # 生成蛇行指标图表
- self.generate_metric_chart('zigzag')
-
- return self.zigzag_count
-
- def calculate_shake_count(self):
- """计算晃动指标"""
- self._shake_detector()
-
- # 生成晃动指标图表
- self.generate_metric_chart('shake')
-
- return self.shake_count
-
- def calculate_cadence_count(self):
- """计算顿挫指标"""
- # 调用顿挫检测器
- cadence_time_ranges = self._cadence_detector()
-
- # 记录检测结果
- self.calculated_value['cadence'] = self.cadence_count
-
- # 生成顿挫指标图表
- self.generate_metric_chart('cadence')
-
- return self.cadence_count
-
- def calculate_slam_brake_count(self):
- """计算急刹车指标"""
- self._slam_brake_detector()
-
- # 生成急刹车指标图表
- self.generate_metric_chart('slamBrake')
-
- return self.slam_brake_count
-
-
- def calculate_slam_accel_count(self):
- """计算急加速指标"""
- self._slam_accel_detector()
-
- # 生成急加速指标图表
- self.generate_metric_chart('slamAccelerate')
-
- return self.slam_accel_count
-
- def calculate_vdv(self):
- """计算振动剂量值(Vibration Dose Value, VDV)指标"""
- vdv_value = super().calculate_vdv()
-
- # 生成VDV指标图表
- self.generate_metric_chart('vdv')
-
- return vdv_value
- def calculate_ava_vav(self):
- """计算多维度综合加权加速度"""
- ava_vav_value = super().calculate_ava_vav()
-
- # 生成AVA_VAV指标图表
- self.generate_metric_chart('ava_vav')
-
- return ava_vav_value
- def calculate_msdv(self):
- """计算晕动剂量值(Motion Sickness Dose Value, MSDV)"""
- msdv_value = super().calculate_msdv()
-
- # 生成MSDV指标图表
- self.generate_metric_chart('msdv')
-
- return msdv_value
-
- def _shake_detector(self, T_diff=0.5):
- """检测晃动事件 - 改进版本(使用向量化操作)
-
- 该函数通过以下步骤检测车辆晃动事件:
- 1. 计算横向加速度变化率和横摆角速度变化率
- 2. 分析横摆角速度的短期变化特性
- 3. 设置基于车速的动态阈值
- 4. 综合多个条件判断晃动事件
- 5. 对连续帧进行分组处理
- 6. 保存晃动事件数据到CSV文件
- 7. 将保存的CSV数据可视化并为晃动事件发生的时间段添加背景颜色
- """
- # 获取数据
- df = self.ego_df.copy()
-
- # 检查是否有必要的列
- if 'lat_acc' not in df.columns or 'posH' not in df.columns:
- self.logger.warning("缺少计算晃动指标所需的数据列")
- return
-
- # 将东北天坐标系下的数据转换为车身坐标系
- # 车身坐标系:X轴指向车头,Y轴指向车辆左侧,Z轴指向车顶
- df['posH_rad'] = np.radians(df['posH'])
-
- # 转换横向加速度到车身坐标系
- df['lat_acc_body'] = df['lat_acc'] * np.cos(df['posH_rad']) - df['lon_acc'] * np.sin(df['posH_rad'])
-
- # 转换横摆角速度到车身坐标系
- # speedH已经是车身坐标系下的横摆角速度,不需要转换
- df['speedH_body'] = df['speedH']
-
- # 1. 计算横向加速度变化率(使用车身坐标系下的横向加速度)
- df['lat_acc_rate'] = df['lat_acc_body'].diff() / df['simTime'].diff()
-
- # 2. 计算横摆角速度变化率(使用车身坐标系下的横摆角速度)
- df['speedH_rate'] = df['speedH_body'].diff() / df['simTime'].diff()
-
- # 3. 计算横摆角速度的短期变化特性
- window_size = 10 # 10帧窗口
- df['speedH_std'] = df['speedH'].rolling(window=window_size, min_periods=2).std()
-
- # 4. 基于车速的动态阈值
- v0 = 20 * 5/18 # ≈5.56 m/s
- k = 0.008 * 3.6 # =0.0288 per m/s
- df['lat_acc_threshold'] = df['v'].apply(
- lambda speed: max(
- 1.0, # 下限 1.0 m/s²
- min(
- 1.8, # 上限 1.8 m/s²
- 1.8 - k * (speed - v0) # 线性递减
- )
- )
- )
-
- df['speedH_threshold'] = df['v'].apply(
- lambda speed: max(1.5, min(3.0, 2.0 * (1 + (speed - 20) / 60)))
- )
-
- # 5. 综合判断晃动条件
- # 条件A: 横向加速度超过阈值
- condition_A = df['lat_acc'].abs() > df['lat_acc_threshold']
-
- # 条件B: 横向加速度变化率超过阈值
- lat_acc_rate_threshold = 0.5 # 横向加速度变化率阈值 (m/s³)
- condition_B = df['lat_acc_rate'].abs() > lat_acc_rate_threshold
-
- # 条件C: 横摆角速度有明显变化但不呈现周期性
- condition_C = (df['speedH_std'] > df['speedH_threshold'])
-
- # 综合条件: 满足条件A,且满足条件B或条件C
- shake_condition = condition_A & (condition_B | condition_C)
-
- # 6. 使用向量化操作检测连续事件
- event_groups = (shake_condition != shake_condition.shift()).cumsum()
- shake_events = []
-
- for _, group in df[shake_condition].groupby(event_groups):
- if len(group) >= 2: # 至少2帧才算一次晃动
- start_time = group['simTime'].iloc[0]
- end_time = group['simTime'].iloc[-1]
- duration = end_time - start_time
-
- if duration >= T_diff: # 只记录持续时间超过阈值的事件
- shake_events.append({
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': group['simFrame'].iloc[0],
- 'end_frame': group['simFrame'].iloc[-1],
- 'duration': duration,
- 'max_lat_acc': group['lat_acc'].abs().max()
- })
-
- # 添加到不舒适事件表
- new_row = pd.DataFrame([{
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': group['simFrame'].iloc[0],
- 'end_frame': group['simFrame'].iloc[-1],
- 'type': 'shake'
- }])
- self.discomfort_df = pd.concat([self.discomfort_df, new_row], ignore_index=True)
-
- # 更新晃动计数
- self.shake_count = len(shake_events)
- self.logger.info(f"检测到 {self.shake_count} 次晃动事件")
-
- # 更新ego_df中的相关列
- self.ego_df = df.copy()
-
- # 保存晃动事件数据到CSV文件,用于后续图表生成
- if shake_events:
- try:
- # 保存用于绘图的数据
- self.shake_events = shake_events
- self.logger.info(f"检测到 {len(shake_events)} 个晃动事件,已保存用于图表生成")
- except Exception as e:
- self.logger.error(f"保存晃动事件数据失败: {str(e)}", exc_info=True)
-
- return shake_events
-
-
- def _cadence_detector(self):
- """
- 顿挫检测:短时间内出现多次加速度突变(cadence),例如频繁加减速。
- - 特征点定义为 cadence 变化值非 0 的时刻;
- - 聚类这些特征点,1s 内聚为一组,去除小于 1 个点的组;
- - 统计强度与频率,记录不适事件。
- """
- # 检查必要字段是否存在
- required_fields = ['simTime', 'simFrame', 'cadence']
- acc_field = 'lon_acc_vehicle' if 'lon_acc_vehicle' in self.ego_df.columns else 'lon_acc'
-
- if not all(field in self.ego_df.columns for field in required_fields + [acc_field]):
- missing_fields = [field for field in required_fields + [acc_field] if field not in self.ego_df.columns]
- self.logger.warning(f"顿挫检测缺少必要字段: {missing_fields},无法进行检测")
- self.cadence_count = 0
- return []
-
- # 提取必要字段
- df = self.ego_df[['simTime', 'simFrame', acc_field, 'cadence']].copy()
- # 重命名列以保持代码一致性
- df.rename(columns={acc_field: 'acc_used'}, inplace=True)
-
- # 滤除无效cadence值
- df = df[df['cadence'].notna()].copy()
- df['cadence_diff'] = df['cadence'].diff()
- df.dropna(subset=['cadence_diff'], inplace=True)
- df = df[df['cadence_diff'] != 0]
- if df.empty:
- self.logger.info("未检测到明显cadence变化,未触发顿挫事件")
- self.cadence_count = 0
- return []
- # 提取突变点信息
- time_list = df['simTime'].tolist()
- frame_list = df['simFrame'].tolist()
- # 聚类突变点:按时间差小于 TIME_RANGE 分组
- TIME_RANGE = 1.0 # 秒
- grouped_times, grouped_frames = [], []
- temp_times, temp_frames = [], []
- for i in range(len(time_list)):
- if not temp_times or (time_list[i] - temp_times[-1] <= TIME_RANGE):
- temp_times.append(time_list[i])
- temp_frames.append(frame_list[i])
- else:
- if len(temp_times) >= 1:
- grouped_times.append(temp_times)
- grouped_frames.append(temp_frames)
- temp_times, temp_frames = [time_list[i]], [frame_list[i]]
- if len(temp_times) >= 1:
- grouped_times.append(temp_times)
- grouped_frames.append(temp_frames)
- # 只保留有效顿挫组
- cadence_time_ranges = [[g[0], g[-1]] for g in grouped_times]
- cadence_frame_ranges = [[g[0], g[-1]] for g in grouped_frames]
- # 输出结果到 discomfort_df
- if cadence_time_ranges:
- discomfort_df = pd.DataFrame({
- 'start_time': [g[0] for g in cadence_time_ranges],
- 'end_time': [g[1] for g in cadence_time_ranges],
- 'start_frame': [g[0] for g in cadence_frame_ranges],
- 'end_frame': [g[1] for g in cadence_frame_ranges],
- 'type': 'cadence'
- })
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- # 计算强度与频率(用于量化)
- stre_list, freq_list = [], []
- for group_times in grouped_times:
- g_df = df[df['simTime'].isin(group_times)]
- strength = g_df['acc_used'].abs().mean()
- stre_list.append(strength)
- if len(group_times) > 1:
- t_delta = group_times[-1] - group_times[0]
- freq = len(group_times) / t_delta if t_delta > 0 else 0
- freq_list.append(freq)
- # 存储检测统计
- self.cadence_count = len(cadence_time_ranges)
- cadence_strength = np.mean(stre_list) if stre_list else 0
- self.logger.info(f"检测到 {self.cadence_count} 次顿挫事件,平均强度:{cadence_strength:.2f}")
-
- # 记录使用的加速度字段
- self.logger.info(f"顿挫检测使用的加速度字段: {acc_field}")
- return cadence_time_ranges
- def _slam_brake_detector(self):
- """检测急刹车事件"""
- # 获取数据
- df = self.ego_df.copy()
-
- # 检查是否有必要的列
- if 'slam_brake' not in df.columns:
- self.logger.warning("缺少计算急刹车指标所需的数据列")
- return
-
- # 设置急刹车检测参数
- min_duration = 0.5 # 最小持续时间 秒
-
- # 检测连续的急刹车事件
- slam_brake_events = []
- in_event = False
- start_idx = 0
-
- for i, row in df.iterrows():
- if row['slam_brake'] == 1 and not in_event:
- # 开始新的急刹车事件
- in_event = True
- start_idx = i
- elif row['slam_brake'] == 0 and in_event:
- # 结束当前急刹车事件
- in_event = False
- end_idx = i - 1
-
- # 计算事件持续时间
- start_time = df.loc[start_idx, 'simTime']
- end_time = df.loc[end_idx, 'simTime']
- duration = end_time - start_time
-
- # 如果持续时间超过阈值,记录为有效急刹车事件
- if duration >= min_duration:
- # 确定使用的加速度字段
- acc_field = 'lon_acc_vehicle' if 'lon_acc_vehicle' in df.columns else 'lon_acc'
-
- slam_brake_events.append({
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': df.loc[start_idx, 'simFrame'],
- 'end_frame': df.loc[end_idx, 'simFrame'],
- 'duration': duration,
- 'min_lon_acc': df.loc[start_idx:end_idx, acc_field].min()
- })
-
- # 添加到不舒适事件表
- new_row = pd.DataFrame([{
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': df.loc[start_idx, 'simFrame'],
- 'end_frame': df.loc[end_idx, 'simFrame'],
- 'type': 'slam_brake'
- }])
- self.discomfort_df = pd.concat([self.discomfort_df, new_row], ignore_index=True)
-
- # 如果最后一个事件没有结束,检查它
- if in_event:
- end_idx = len(df) - 1
- start_time = df.loc[start_idx, 'simTime']
- end_time = df.loc[end_idx, 'simTime']
- duration = end_time - start_time
-
- if duration >= min_duration:
- # 确定使用的加速度字段
- acc_field = 'lon_acc_vehicle' if 'lon_acc_vehicle' in df.columns else 'lon_acc'
-
- slam_brake_events.append({
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': df.loc[start_idx, 'simFrame'],
- 'end_frame': df.loc[end_idx, 'simFrame'],
- 'duration': duration,
- 'min_lon_acc': df.loc[start_idx:end_idx, acc_field].min()
- })
-
- # 添加到不舒适事件表
- new_row = pd.DataFrame([{
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': df.loc[start_idx, 'simFrame'],
- 'end_frame': df.loc[end_idx, 'simFrame'],
- 'type': 'slam_brake'
- }])
- self.discomfort_df = pd.concat([self.discomfort_df, new_row], ignore_index=True)
-
- # 更新急刹车计数
- self.slam_brake_count = len(slam_brake_events)
- self.logger.info(f"检测到 {self.slam_brake_count} 次急刹车事件")
-
- def _slam_accel_detector(self):
- """检测急加速事件"""
- # 获取数据
- df = self.ego_df.copy()
-
- # 检查是否有必要的列
- if 'slam_accel' not in df.columns:
- self.logger.warning("缺少计算急加速指标所需的数据列")
- return
-
- # 设置急加速检测参数
- min_duration = 0.5 # 最小持续时间 秒
-
- # 检测连续的急加速事件
- slam_accel_events = []
- in_event = False
- start_idx = 0
-
- for i, row in df.iterrows():
- if row['slam_accel'] == 1 and not in_event:
- # 开始新的急加速事件
- in_event = True
- start_idx = i
- elif row['slam_accel'] == 0 and in_event:
- # 结束当前急加速事件
- in_event = False
- end_idx = i - 1
-
- # 计算事件持续时间
- start_time = df.loc[start_idx, 'simTime']
- end_time = df.loc[end_idx, 'simTime']
- duration = end_time - start_time
-
- # 如果持续时间超过阈值,记录为有效急加速事件
- if duration >= min_duration:
- # 确定使用的加速度字段
- acc_field = 'lon_acc_vehicle' if 'lon_acc_vehicle' in df.columns else 'lon_acc'
-
- slam_accel_events.append({
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': df.loc[start_idx, 'simFrame'],
- 'end_frame': df.loc[end_idx, 'simFrame'],
- 'duration': duration,
- 'max_lon_acc': df.loc[start_idx:end_idx, acc_field].max()
- })
-
- # 添加到不舒适事件表
- new_row = pd.DataFrame([{
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': df.loc[start_idx, 'simFrame'],
- 'end_frame': df.loc[end_idx, 'simFrame'],
- 'type': 'slam_accel'
- }])
- self.discomfort_df = pd.concat([self.discomfort_df, new_row], ignore_index=True)
-
- # 如果最后一个事件没有结束,检查它
- if in_event:
- end_idx = len(df) - 1
- start_time = df.loc[start_idx, 'simTime']
- end_time = df.loc[end_idx, 'simTime']
- duration = end_time - start_time
-
- if duration >= min_duration:
- # 确定使用的加速度字段
- acc_field = 'lon_acc_vehicle' if 'lon_acc_vehicle' in df.columns else 'lon_acc'
-
- slam_accel_events.append({
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': df.loc[start_idx, 'simFrame'],
- 'end_frame': df.loc[end_idx, 'simFrame'],
- 'duration': duration,
- 'max_lon_acc': df.loc[start_idx:end_idx, acc_field].max()
- })
-
- # 添加到不舒适事件表
- new_row = pd.DataFrame([{
- 'start_time': start_time,
- 'end_time': end_time,
- 'start_frame': df.loc[start_idx, 'simFrame'],
- 'end_frame': df.loc[end_idx, 'simFrame'],
- 'type': 'slam_accel'
- }])
- self.discomfort_df = pd.concat([self.discomfort_df, new_row], ignore_index=True)
-
- # 更新急加速计数
- self.slam_accel_count = len(slam_accel_events)
- self.logger.info(f"检测到 {self.slam_accel_count} 次急加速事件")
- class ComfortManager:
- """舒适性指标计算主类"""
-
- def __init__(self, data_processed):
- self.data = data_processed
- self.logger = LogManager().get_logger()
- self.registry = ComfortRegistry(self.data)
- def report_statistic(self):
- """生成舒适性评分报告"""
- comfort_result = self.registry.batch_execute()
-
- return comfort_result
|