123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2024 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen
- @Data: 2024/12/23
- @Last Modified: 2024/12/23
- @Summary: Efficient metrics calculation
- """
- from modules.lib.score import Score
- from modules.lib.log_manager import LogManager
- import numpy as np
- from typing import Dict, Tuple, Optional, Callable, Any
- import pandas as pd
- class Efficient:
- """高效性指标计算类"""
-
- def __init__(self, data_processed):
- """初始化高效性指标计算类
-
- Args:
- data_processed: 预处理后的数据对象
- """
- self.logger = LogManager().get_logger()
- self.data_processed = data_processed
- self.df = data_processed.object_df.copy() # 浅拷贝
- self.ego_df = data_processed.ego_data.copy() # 浅拷贝
-
- # 配置参数
- self.STOP_SPEED_THRESHOLD = 0.05 # 停车速度阈值 (m/s)
- self.STOP_TIME_THRESHOLD = 0.5 # 停车时间阈值 (秒)
- self.FRAME_RANGE = 13 # 停车帧数阈值
-
- # 初始化结果变量
- self.stop_count = 0 # 停车次数
- self.stop_duration = 0 # 平均停车时长
- self.average_v = 0 # 平均速度
-
- # 统计指标结果字典
- self.calculated_value = {
- 'maxSpeed': 0,
- 'deviationSpeed': 0,
- 'averagedSpeed': 0,
- 'stopDuration': 0,
- 'speedUtilizationRatio': 0,
- 'accelerationSmoothness': 0 # 添加新指标的默认值
- }
-
- def _max_speed(self):
- """计算最大速度
-
- Returns:
- float: 最大速度 (m/s)
- """
- max_speed = self.ego_df['v'].max() * 3.6 # 转换为 km/h
- self.calculated_value['maxSpeed'] = max_speed
- return max_speed
- def _deviation_speed(self):
- """计算速度方差
-
- Returns:
- float: 速度方差
- """
- deviation = self.ego_df['v'].var() * 3.6 # 转换为 km/h
- self.calculated_value['deviationSpeed'] = deviation
- return deviation
- def average_velocity(self):
- """计算平均速度
-
- Returns:
- float: 平均速度 (km/h)
- """
- self.average_v = self.ego_df['v'].mean() * 3.6 # 转换为 km/h
- self.calculated_value['averagedSpeed'] = self.average_v
- return self.average_v
- def stop_duration_and_count(self):
- """计算停车次数和平均停车时长
-
- Returns:
- float: 平均停车时长 (秒)
- """
- # 获取速度低于阈值的时间和帧号
- stop_mask = self.ego_df['v'] <= self.STOP_SPEED_THRESHOLD
- if not any(stop_mask):
- self.calculated_value['stopDuration'] = 0
- return 0 # 如果没有停车,直接返回0
-
- stop_time_list = self.ego_df.loc[stop_mask, 'simTime'].values.tolist()
- stop_frame_list = self.ego_df.loc[stop_mask, 'simFrame'].values.tolist()
-
- if not stop_frame_list:
- return 0 # 防止空列表导致的索引错误
-
- stop_frame_group = []
- stop_time_group = []
- sum_stop_time = 0
- f1, t1 = stop_frame_list[0], stop_time_list[0]
-
- # 检测停车段
- for i in range(1, len(stop_frame_list)):
- if stop_frame_list[i] - stop_frame_list[i - 1] != 1: # 帧不连续
- f2, t2 = stop_frame_list[i - 1], stop_time_list[i - 1]
- # 如果停车有效(帧数差 >= FRAME_RANGE)
- if f2 - f1 >= self.FRAME_RANGE:
- stop_frame_group.append((f1, f2))
- stop_time_group.append((t1, t2))
- sum_stop_time += (t2 - t1)
- self.stop_count += 1
- # 更新起始点
- f1, t1 = stop_frame_list[i], stop_time_list[i]
-
- # 检查最后一段停车
- if len(stop_frame_list) > 0:
- f2, t2 = stop_frame_list[-1], stop_time_list[-1]
- last_frame = self.ego_df['simFrame'].values[-1]
- # 确保不是因为数据结束导致的停车
- if f2 - f1 >= self.FRAME_RANGE and f2 != last_frame:
- stop_frame_group.append((f1, f2))
- stop_time_group.append((t1, t2))
- sum_stop_time += (t2 - t1)
- self.stop_count += 1
-
- # 计算平均停车时长
- self.stop_duration = sum_stop_time / self.stop_count if self.stop_count > 0 else 0
- self.calculated_value['stopDuration'] = self.stop_duration
-
- self.logger.info(f"检测到停车次数: {self.stop_count}, 平均停车时长: {self.stop_duration:.2f}秒")
- return self.stop_duration
- def speed_utilization_ratio(self, default_speed_limit=60.0):
- """计算速度利用率
-
- 速度利用率度量车辆实际速度与道路限速之间的比率,
- 反映车辆对道路速度资源的利用程度。
-
- 计算公式: R_v = v_actual / v_limit
-
- Args:
- default_speed_limit: 默认道路限速 (km/h),当无法获取实际限速时使用
-
- Returns:
- float: 速度利用率 (0-1之间的比率)
- """
- # 获取车辆速度数据 (m/s)
- speeds = self.ego_df['v'].values
-
- # 尝试从数据中获取道路限速信息
- # 首先检查road_speed_max列,其次检查speedLimit列,最后使用默认值
- if 'road_speed_max' in self.ego_df.columns:
- speed_limits = self.ego_df['road_speed_max'].values
- self.logger.info("使用road_speed_max列作为道路限速信息")
- elif 'speedLimit' in self.ego_df.columns:
- speed_limits = self.ego_df['speedLimit'].values
- self.logger.info("使用speedLimit列作为道路限速信息")
- else:
- # 默认限速转换为 m/s
- default_limit_ms = default_speed_limit / 3.6
- speed_limits = np.full_like(speeds, default_limit_ms)
- self.logger.info(f"未找到道路限速信息,使用默认限速: {default_speed_limit} km/h")
-
- # 确保限速值为m/s单位,如果数据是km/h需要转换
- # 假设如果限速值大于30,则认为是km/h单位,需要转换为m/s
- if np.mean(speed_limits) > 30:
- speed_limits = speed_limits / 3.6
- self.logger.info("将限速单位从km/h转换为m/s")
-
- # 计算每一帧的速度利用率
- ratios = np.divide(speeds, speed_limits,
- out=np.zeros_like(speeds),
- where=speed_limits!=0)
-
- # 限制比率不超过1(超速按1计算)
- ratios = np.minimum(ratios, 1.0)
-
- # 计算平均速度利用率
- avg_ratio = np.mean(ratios)
- self.calculated_value['speedUtilizationRatio'] = avg_ratio
-
- self.logger.info(f"速度利用率(Speed Utilization Ratio): {avg_ratio:.4f}")
- return avg_ratio
- # ----------------------
- # 基础指标计算函数
- # ----------------------
- def maxSpeed(data_processed) -> dict:
- """计算最大速度"""
- efficient = Efficient(data_processed)
- max_speed = efficient._max_speed()
- return {"maxSpeed": float(max_speed)}
- def deviationSpeed(data_processed) -> dict:
- """计算速度方差"""
- efficient = Efficient(data_processed)
- deviation = efficient._deviation_speed()
- return {"deviationSpeed": float(deviation)}
- def averagedSpeed(data_processed) -> dict:
- """计算平均速度"""
- efficient = Efficient(data_processed)
- avg_speed = efficient.average_velocity()
- return {"averagedSpeed": float(avg_speed)}
- def stopDuration(data_processed) -> dict:
- """计算停车持续时间和次数"""
- efficient = Efficient(data_processed)
- stop_duration = efficient.stop_duration_and_count()
- return {"stopDuration": float(stop_duration)}
- def speedUtilizationRatio(data_processed) -> dict:
- """计算速度利用率"""
- efficient = Efficient(data_processed)
- ratio = efficient.speed_utilization_ratio()
- return {"speedUtilizationRatio": float(ratio)}
- def acceleration_smoothness(data_processed) -> dict:
- """计算加速度平稳度"""
- efficient = Efficient(data_processed)
- smoothness = efficient.acceleration_smoothness()
- return {"accelerationSmoothness": float(smoothness)}
- class EfficientRegistry:
- """高效性指标注册器"""
-
- def __init__(self, data_processed):
- self.logger = LogManager().get_logger() # 获取全局日志实例
- self.data = data_processed
- self.eff_config = data_processed.efficient_config["efficient"]
- self.metrics = self._extract_metrics(self.eff_config)
- self._registry = self._build_registry()
-
- def _extract_metrics(self, config_node: dict) -> list:
- """DFS遍历提取指标"""
- metrics = []
- def _recurse(node):
- if isinstance(node, dict):
- if 'name' in node and not any(isinstance(v, dict) for v in node.values()):
- metrics.append(node['name'])
- for v in node.values():
- _recurse(v)
- _recurse(config_node)
- self.logger.info(f'评比的高效性指标列表:{metrics}')
- return metrics
-
- def _build_registry(self) -> dict:
- """自动注册指标函数"""
- registry = {}
- for metric_name in self.metrics:
- try:
- registry[metric_name] = globals()[metric_name]
- except KeyError:
- self.logger.error(f"未实现指标函数: {metric_name}")
- return registry
-
- def batch_execute(self) -> dict:
- """批量执行指标计算"""
- results = {}
- for name, func in self._registry.items():
- try:
- result = func(self.data)
- results.update(result)
- # 新增:将每个指标的结果写入日志
- self.logger.info(f'高效性指标[{name}]计算结果: {result}')
- except Exception as e:
- self.logger.error(f"{name} 执行失败: {str(e)}", exc_info=True)
- results[name] = None
- self.logger.info(f'高效性指标计算结果:{results}')
- return results
- class EfficientManager:
- """高效性指标管理类"""
- def __init__(self, data_processed):
- self.data = data_processed
- self.efficient = EfficientRegistry(self.data)
-
- def report_statistic(self):
- """Generate the statistics and report the results."""
- # 使用注册表批量执行指标计算
- efficient_result = self.efficient.batch_execute()
- return efficient_result
- def acceleration_smoothness(self):
- """计算加速度平稳度
-
- 加速度平稳度用以衡量车辆加减速过程的平滑程度,
- 通过计算加速度序列的波动程度(标准差)来评估。
- 平稳度指标定义为 1-σ_a/a_max(归一化后靠近1代表加速度更稳定)。
-
- Returns:
- float: 加速度平稳度 (0-1之间的比率,越接近1表示越平稳)
- """
- # 获取加速度数据
- # 优先使用车辆坐标系下的加速度数据
- if 'lon_acc_vehicle' in self.ego_df.columns and 'lat_acc_vehicle' in self.ego_df.columns:
- # 使用车辆坐标系下的加速度计算合成加速度
- lon_acc = self.ego_df['lon_acc_vehicle'].values
- lat_acc = self.ego_df['lat_acc_vehicle'].values
- accel_magnitude = np.sqrt(lon_acc**2 + lat_acc**2)
- self.logger.info("使用车辆坐标系下的加速度计算合成加速度")
- elif 'accelX' in self.ego_df.columns and 'accelY' in self.ego_df.columns:
- # 计算合成加速度(考虑X和Y方向)
- accel_x = self.ego_df['accelX'].values
- accel_y = self.ego_df['accelY'].values
- accel_magnitude = np.sqrt(accel_x**2 + accel_y**2)
- self.logger.info("使用accelX和accelY计算合成加速度")
- else:
- # 从速度差分计算加速度
- velocity = self.ego_df['v'].values
- time_diff = self.ego_df['simTime'].diff().fillna(0).values
- # 避免除以零
- time_diff[time_diff == 0] = 1e-6
- accel_magnitude = np.abs(np.diff(velocity, prepend=velocity[0]) / time_diff)
- self.logger.info("从速度差分计算加速度")
-
- # 过滤掉异常值(可选)
- # 使用3倍标准差作为阈值
- mean_accel = np.mean(accel_magnitude)
- std_accel = np.std(accel_magnitude)
- threshold = mean_accel + 3 * std_accel
- filtered_accel = accel_magnitude[accel_magnitude <= threshold]
-
- # 如果过滤后数据太少,则使用原始数据
- if len(filtered_accel) < len(accel_magnitude) * 0.8:
- filtered_accel = accel_magnitude
- self.logger.info("过滤后数据太少,使用原始加速度数据")
- else:
- self.logger.info(f"过滤掉 {len(accel_magnitude) - len(filtered_accel)} 个异常加速度值")
-
- # 计算加速度标准差
- accel_std = np.std(filtered_accel)
-
- # 计算最大加速度(使用95百分位数以避免极端值影响)
- accel_max = np.percentile(filtered_accel, 95)
-
- # 防止除以零
- if accel_max < 0.001:
- accel_max = 0.001
-
- # 计算平稳度指标: 1 - σ_a/a_max
- smoothness = 1.0 - (accel_std / accel_max)
-
- # 限制在0-1范围内
- smoothness = np.clip(smoothness, 0.0, 1.0)
-
- self.calculated_value['accelerationSmoothness'] = smoothness
-
- self.logger.info(f"加速度标准差: {accel_std:.4f} m/s²")
- self.logger.info(f"加速度最大值(95百分位): {accel_max:.4f} m/s²")
- self.logger.info(f"加速度平稳度(Acceleration Smoothness): {smoothness:.4f}")
-
- return smoothness
-
|