efficient.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2024 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen
  10. @Data: 2024/12/23
  11. @Last Modified: 2024/12/23
  12. @Summary: Efficient metrics calculation
  13. """
  14. from modules.lib.score import Score
  15. from modules.lib.log_manager import LogManager
  16. import numpy as np
  17. from typing import Dict, Tuple, Optional, Callable, Any
  18. import pandas as pd
  19. class Efficient:
  20. """高效性指标计算类"""
  21. def __init__(self, data_processed):
  22. """初始化高效性指标计算类
  23. Args:
  24. data_processed: 预处理后的数据对象
  25. """
  26. self.logger = LogManager().get_logger()
  27. self.data_processed = data_processed
  28. self.df = data_processed.object_df.copy() # 浅拷贝
  29. self.ego_df = data_processed.ego_data.copy() # 浅拷贝
  30. # 配置参数
  31. self.STOP_SPEED_THRESHOLD = 0.05 # 停车速度阈值 (m/s)
  32. self.STOP_TIME_THRESHOLD = 0.5 # 停车时间阈值 (秒)
  33. self.FRAME_RANGE = 13 # 停车帧数阈值
  34. # 初始化结果变量
  35. self.stop_count = 0 # 停车次数
  36. self.stop_duration = 0 # 平均停车时长
  37. self.average_v = 0 # 平均速度
  38. # 统计指标结果字典
  39. self.calculated_value = {
  40. 'maxSpeed': 0,
  41. 'deviationSpeed': 0,
  42. 'averagedSpeed': 0,
  43. 'stopDuration': 0,
  44. 'speedUtilizationRatio': 0,
  45. 'accelerationSmoothness': 0 # 添加新指标的默认值
  46. }
  47. def _max_speed(self):
  48. """计算最大速度
  49. Returns:
  50. float: 最大速度 (m/s)
  51. """
  52. max_speed = self.ego_df['v'].max() * 3.6 # 转换为 km/h
  53. self.calculated_value['maxSpeed'] = max_speed
  54. return max_speed
  55. def _deviation_speed(self):
  56. """计算速度方差
  57. Returns:
  58. float: 速度方差
  59. """
  60. deviation = self.ego_df['v'].var() * 3.6 # 转换为 km/h
  61. self.calculated_value['deviationSpeed'] = deviation
  62. return deviation
  63. def average_velocity(self):
  64. """计算平均速度
  65. Returns:
  66. float: 平均速度 (km/h)
  67. """
  68. self.average_v = self.ego_df['v'].mean() * 3.6 # 转换为 km/h
  69. self.calculated_value['averagedSpeed'] = self.average_v
  70. return self.average_v
  71. def stop_duration_and_count(self):
  72. """计算停车次数和平均停车时长
  73. Returns:
  74. float: 平均停车时长 (秒)
  75. """
  76. # 获取速度低于阈值的时间和帧号
  77. stop_mask = self.ego_df['v'] <= self.STOP_SPEED_THRESHOLD
  78. if not any(stop_mask):
  79. self.calculated_value['stopDuration'] = 0
  80. return 0 # 如果没有停车,直接返回0
  81. stop_time_list = self.ego_df.loc[stop_mask, 'simTime'].values.tolist()
  82. stop_frame_list = self.ego_df.loc[stop_mask, 'simFrame'].values.tolist()
  83. if not stop_frame_list:
  84. return 0 # 防止空列表导致的索引错误
  85. stop_frame_group = []
  86. stop_time_group = []
  87. sum_stop_time = 0
  88. f1, t1 = stop_frame_list[0], stop_time_list[0]
  89. # 检测停车段
  90. for i in range(1, len(stop_frame_list)):
  91. if stop_frame_list[i] - stop_frame_list[i - 1] != 1: # 帧不连续
  92. f2, t2 = stop_frame_list[i - 1], stop_time_list[i - 1]
  93. # 如果停车有效(帧数差 >= FRAME_RANGE)
  94. if f2 - f1 >= self.FRAME_RANGE:
  95. stop_frame_group.append((f1, f2))
  96. stop_time_group.append((t1, t2))
  97. sum_stop_time += (t2 - t1)
  98. self.stop_count += 1
  99. # 更新起始点
  100. f1, t1 = stop_frame_list[i], stop_time_list[i]
  101. # 检查最后一段停车
  102. if len(stop_frame_list) > 0:
  103. f2, t2 = stop_frame_list[-1], stop_time_list[-1]
  104. last_frame = self.ego_df['simFrame'].values[-1]
  105. # 确保不是因为数据结束导致的停车
  106. if f2 - f1 >= self.FRAME_RANGE and f2 != last_frame:
  107. stop_frame_group.append((f1, f2))
  108. stop_time_group.append((t1, t2))
  109. sum_stop_time += (t2 - t1)
  110. self.stop_count += 1
  111. # 计算平均停车时长
  112. self.stop_duration = sum_stop_time / self.stop_count if self.stop_count > 0 else 0
  113. self.calculated_value['stopDuration'] = self.stop_duration
  114. self.logger.info(f"检测到停车次数: {self.stop_count}, 平均停车时长: {self.stop_duration:.2f}秒")
  115. return self.stop_duration
  116. def speed_utilization_ratio(self, default_speed_limit=60.0):
  117. """计算速度利用率
  118. 速度利用率度量车辆实际速度与道路限速之间的比率,
  119. 反映车辆对道路速度资源的利用程度。
  120. 计算公式: R_v = v_actual / v_limit
  121. Args:
  122. default_speed_limit: 默认道路限速 (km/h),当无法获取实际限速时使用
  123. Returns:
  124. float: 速度利用率 (0-1之间的比率)
  125. """
  126. # 获取车辆速度数据 (m/s)
  127. speeds = self.ego_df['v'].values
  128. # 尝试从数据中获取道路限速信息
  129. # 首先检查road_speed_max列,其次检查speedLimit列,最后使用默认值
  130. if 'road_speed_max' in self.ego_df.columns:
  131. speed_limits = self.ego_df['road_speed_max'].values
  132. self.logger.info("使用road_speed_max列作为道路限速信息")
  133. elif 'speedLimit' in self.ego_df.columns:
  134. speed_limits = self.ego_df['speedLimit'].values
  135. self.logger.info("使用speedLimit列作为道路限速信息")
  136. else:
  137. # 默认限速转换为 m/s
  138. default_limit_ms = default_speed_limit / 3.6
  139. speed_limits = np.full_like(speeds, default_limit_ms)
  140. self.logger.info(f"未找到道路限速信息,使用默认限速: {default_speed_limit} km/h")
  141. # 确保限速值为m/s单位,如果数据是km/h需要转换
  142. # 假设如果限速值大于30,则认为是km/h单位,需要转换为m/s
  143. if np.mean(speed_limits) > 30:
  144. speed_limits = speed_limits / 3.6
  145. self.logger.info("将限速单位从km/h转换为m/s")
  146. # 计算每一帧的速度利用率
  147. ratios = np.divide(speeds, speed_limits,
  148. out=np.zeros_like(speeds),
  149. where=speed_limits!=0)
  150. # 限制比率不超过1(超速按1计算)
  151. ratios = np.minimum(ratios, 1.0)
  152. # 计算平均速度利用率
  153. avg_ratio = np.mean(ratios)
  154. self.calculated_value['speedUtilizationRatio'] = avg_ratio
  155. self.logger.info(f"速度利用率(Speed Utilization Ratio): {avg_ratio:.4f}")
  156. return avg_ratio
  157. # ----------------------
  158. # 基础指标计算函数
  159. # ----------------------
  160. def maxSpeed(data_processed) -> dict:
  161. """计算最大速度"""
  162. efficient = Efficient(data_processed)
  163. max_speed = efficient._max_speed()
  164. return {"maxSpeed": float(max_speed)}
  165. def deviationSpeed(data_processed) -> dict:
  166. """计算速度方差"""
  167. efficient = Efficient(data_processed)
  168. deviation = efficient._deviation_speed()
  169. return {"deviationSpeed": float(deviation)}
  170. def averagedSpeed(data_processed) -> dict:
  171. """计算平均速度"""
  172. efficient = Efficient(data_processed)
  173. avg_speed = efficient.average_velocity()
  174. return {"averagedSpeed": float(avg_speed)}
  175. def stopDuration(data_processed) -> dict:
  176. """计算停车持续时间和次数"""
  177. efficient = Efficient(data_processed)
  178. stop_duration = efficient.stop_duration_and_count()
  179. return {"stopDuration": float(stop_duration)}
  180. def speedUtilizationRatio(data_processed) -> dict:
  181. """计算速度利用率"""
  182. efficient = Efficient(data_processed)
  183. ratio = efficient.speed_utilization_ratio()
  184. return {"speedUtilizationRatio": float(ratio)}
  185. def acceleration_smoothness(data_processed) -> dict:
  186. """计算加速度平稳度"""
  187. efficient = Efficient(data_processed)
  188. smoothness = efficient.acceleration_smoothness()
  189. return {"accelerationSmoothness": float(smoothness)}
  190. class EfficientRegistry:
  191. """高效性指标注册器"""
  192. def __init__(self, data_processed):
  193. self.logger = LogManager().get_logger() # 获取全局日志实例
  194. self.data = data_processed
  195. self.eff_config = data_processed.efficient_config["efficient"]
  196. self.metrics = self._extract_metrics(self.eff_config)
  197. self._registry = self._build_registry()
  198. def _extract_metrics(self, config_node: dict) -> list:
  199. """DFS遍历提取指标"""
  200. metrics = []
  201. def _recurse(node):
  202. if isinstance(node, dict):
  203. if 'name' in node and not any(isinstance(v, dict) for v in node.values()):
  204. metrics.append(node['name'])
  205. for v in node.values():
  206. _recurse(v)
  207. _recurse(config_node)
  208. self.logger.info(f'评比的高效性指标列表:{metrics}')
  209. return metrics
  210. def _build_registry(self) -> dict:
  211. """自动注册指标函数"""
  212. registry = {}
  213. for metric_name in self.metrics:
  214. try:
  215. registry[metric_name] = globals()[metric_name]
  216. except KeyError:
  217. self.logger.error(f"未实现指标函数: {metric_name}")
  218. return registry
  219. def batch_execute(self) -> dict:
  220. """批量执行指标计算"""
  221. results = {}
  222. for name, func in self._registry.items():
  223. try:
  224. result = func(self.data)
  225. results.update(result)
  226. # 新增:将每个指标的结果写入日志
  227. self.logger.info(f'高效性指标[{name}]计算结果: {result}')
  228. except Exception as e:
  229. self.logger.error(f"{name} 执行失败: {str(e)}", exc_info=True)
  230. results[name] = None
  231. self.logger.info(f'高效性指标计算结果:{results}')
  232. return results
  233. class EfficientManager:
  234. """高效性指标管理类"""
  235. def __init__(self, data_processed):
  236. self.data = data_processed
  237. self.efficient = EfficientRegistry(self.data)
  238. def report_statistic(self):
  239. """Generate the statistics and report the results."""
  240. # 使用注册表批量执行指标计算
  241. efficient_result = self.efficient.batch_execute()
  242. return efficient_result
  243. def acceleration_smoothness(self):
  244. """计算加速度平稳度
  245. 加速度平稳度用以衡量车辆加减速过程的平滑程度,
  246. 通过计算加速度序列的波动程度(标准差)来评估。
  247. 平稳度指标定义为 1-σ_a/a_max(归一化后靠近1代表加速度更稳定)。
  248. Returns:
  249. float: 加速度平稳度 (0-1之间的比率,越接近1表示越平稳)
  250. """
  251. # 获取加速度数据
  252. # 优先使用车辆坐标系下的加速度数据
  253. if 'lon_acc_vehicle' in self.ego_df.columns and 'lat_acc_vehicle' in self.ego_df.columns:
  254. # 使用车辆坐标系下的加速度计算合成加速度
  255. lon_acc = self.ego_df['lon_acc_vehicle'].values
  256. lat_acc = self.ego_df['lat_acc_vehicle'].values
  257. accel_magnitude = np.sqrt(lon_acc**2 + lat_acc**2)
  258. self.logger.info("使用车辆坐标系下的加速度计算合成加速度")
  259. elif 'accelX' in self.ego_df.columns and 'accelY' in self.ego_df.columns:
  260. # 计算合成加速度(考虑X和Y方向)
  261. accel_x = self.ego_df['accelX'].values
  262. accel_y = self.ego_df['accelY'].values
  263. accel_magnitude = np.sqrt(accel_x**2 + accel_y**2)
  264. self.logger.info("使用accelX和accelY计算合成加速度")
  265. else:
  266. # 从速度差分计算加速度
  267. velocity = self.ego_df['v'].values
  268. time_diff = self.ego_df['simTime'].diff().fillna(0).values
  269. # 避免除以零
  270. time_diff[time_diff == 0] = 1e-6
  271. accel_magnitude = np.abs(np.diff(velocity, prepend=velocity[0]) / time_diff)
  272. self.logger.info("从速度差分计算加速度")
  273. # 过滤掉异常值(可选)
  274. # 使用3倍标准差作为阈值
  275. mean_accel = np.mean(accel_magnitude)
  276. std_accel = np.std(accel_magnitude)
  277. threshold = mean_accel + 3 * std_accel
  278. filtered_accel = accel_magnitude[accel_magnitude <= threshold]
  279. # 如果过滤后数据太少,则使用原始数据
  280. if len(filtered_accel) < len(accel_magnitude) * 0.8:
  281. filtered_accel = accel_magnitude
  282. self.logger.info("过滤后数据太少,使用原始加速度数据")
  283. else:
  284. self.logger.info(f"过滤掉 {len(accel_magnitude) - len(filtered_accel)} 个异常加速度值")
  285. # 计算加速度标准差
  286. accel_std = np.std(filtered_accel)
  287. # 计算最大加速度(使用95百分位数以避免极端值影响)
  288. accel_max = np.percentile(filtered_accel, 95)
  289. # 防止除以零
  290. if accel_max < 0.001:
  291. accel_max = 0.001
  292. # 计算平稳度指标: 1 - σ_a/a_max
  293. smoothness = 1.0 - (accel_std / accel_max)
  294. # 限制在0-1范围内
  295. smoothness = np.clip(smoothness, 0.0, 1.0)
  296. self.calculated_value['accelerationSmoothness'] = smoothness
  297. self.logger.info(f"加速度标准差: {accel_std:.4f} m/s²")
  298. self.logger.info(f"加速度最大值(95百分位): {accel_max:.4f} m/s²")
  299. self.logger.info(f"加速度平稳度(Acceleration Smoothness): {smoothness:.4f}")
  300. return smoothness