efficient.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. ##################################################################
  4. #
  5. # Copyright (c) 2024 CICV, Inc. All Rights Reserved
  6. #
  7. ##################################################################
  8. """
  9. @Authors: zhanghaiwen
  10. @Data: 2024/12/23
  11. @Last Modified: 2024/12/23
  12. @Summary: Efficient metrics calculation
  13. """
  14. from modules.lib.score import Score
  15. from modules.lib.log_manager import LogManager
  16. import numpy as np
  17. from typing import Dict, Tuple, Optional, Callable, Any
  18. import pandas as pd
  19. class Efficient:
  20. """高效性指标计算类"""
  21. def __init__(self, data_processed):
  22. """初始化高效性指标计算类
  23. Args:
  24. data_processed: 预处理后的数据对象
  25. """
  26. self.logger = LogManager().get_logger()
  27. self.data_processed = data_processed
  28. self.df = data_processed.object_df.copy() # 浅拷贝
  29. self.ego_df = data_processed.ego_data.copy() # 浅拷贝
  30. # 配置参数
  31. self.STOP_SPEED_THRESHOLD = 0.05 # 停车速度阈值 (m/s)
  32. self.STOP_TIME_THRESHOLD = 0.5 # 停车时间阈值 (秒)
  33. self.FRAME_RANGE = 13 # 停车帧数阈值
  34. # 初始化结果变量
  35. self.stop_count = 0 # 停车次数
  36. self.stop_duration = 0 # 平均停车时长
  37. self.average_v = 0 # 平均速度
  38. # 统计指标结果字典
  39. self.calculated_value = {
  40. 'maxSpeed': 0,
  41. 'deviationSpeed': 0,
  42. 'averagedSpeed': 0,
  43. 'stopDuration': 0,
  44. 'speedUtilizationRatio': 0,
  45. 'accelerationSmoothness': 0 # 添加新指标的默认值
  46. }
  47. def _max_speed(self):
  48. """计算最大速度
  49. Returns:
  50. float: 最大速度 (m/s)
  51. """
  52. max_speed = self.ego_df['v'].max() * 3.6 # 转换为 km/h
  53. self.calculated_value['maxSpeed'] = max_speed
  54. return max_speed
  55. def _deviation_speed(self):
  56. """计算速度方差
  57. Returns:
  58. float: 速度方差
  59. """
  60. deviation = self.ego_df['v'].var() * 3.6 # 转换为 km/h
  61. self.calculated_value['deviationSpeed'] = deviation
  62. return deviation
  63. def average_velocity(self):
  64. """计算平均速度
  65. Returns:
  66. float: 平均速度 (km/h)
  67. """
  68. self.average_v = self.ego_df['v'].mean() * 3.6 # 转换为 km/h
  69. self.calculated_value['averagedSpeed'] = self.average_v
  70. return self.average_v
  71. def acceleration_smoothness(self):
  72. """计算加速度平稳度
  73. 加速度平稳度用以衡量车辆加减速过程的平滑程度,
  74. 通过计算加速度序列的波动程度(标准差)来评估。
  75. 平稳度指标定义为 1-σ_a/a_max(归一化后靠近1代表加速度更稳定)。
  76. Returns:
  77. float: 加速度平稳度 (0-1之间的比率,越接近1表示越平稳)
  78. """
  79. # 获取加速度数据
  80. # 优先使用车辆坐标系下的加速度数据
  81. if 'lon_acc_vehicle' in self.ego_df.columns and 'lat_acc_vehicle' in self.ego_df.columns:
  82. # 使用车辆坐标系下的加速度计算合成加速度
  83. lon_acc = self.ego_df['lon_acc_vehicle'].values
  84. lat_acc = self.ego_df['lat_acc_vehicle'].values
  85. accel_magnitude = np.sqrt(lon_acc**2 + lat_acc**2)
  86. self.logger.info("使用车辆坐标系下的加速度计算合成加速度")
  87. elif 'accelX' in self.ego_df.columns and 'accelY' in self.ego_df.columns:
  88. # 计算合成加速度(考虑X和Y方向)
  89. accel_x = self.ego_df['accelX'].values
  90. accel_y = self.ego_df['accelY'].values
  91. accel_magnitude = np.sqrt(accel_x**2 + accel_y**2)
  92. self.logger.info("使用accelX和accelY计算合成加速度")
  93. else:
  94. # 从速度差分计算加速度
  95. velocity = self.ego_df['v'].values
  96. time_diff = self.ego_df['simTime'].diff().fillna(0).values
  97. # 避免除以零
  98. time_diff[time_diff == 0] = 1e-6
  99. accel_magnitude = np.abs(np.diff(velocity, prepend=velocity[0]) / time_diff)
  100. self.logger.info("从速度差分计算加速度")
  101. # 过滤掉异常值(可选)
  102. # 使用3倍标准差作为阈值
  103. mean_accel = np.mean(accel_magnitude)
  104. std_accel = np.std(accel_magnitude)
  105. threshold = mean_accel + 3 * std_accel
  106. filtered_accel = accel_magnitude[accel_magnitude <= threshold]
  107. # 如果过滤后数据太少,则使用原始数据
  108. if len(filtered_accel) < len(accel_magnitude) * 0.8:
  109. filtered_accel = accel_magnitude
  110. self.logger.info("过滤后数据太少,使用原始加速度数据")
  111. else:
  112. self.logger.info(f"过滤掉 {len(accel_magnitude) - len(filtered_accel)} 个异常加速度值")
  113. # 计算加速度标准差
  114. accel_std = np.std(filtered_accel)
  115. # 计算最大加速度(使用95百分位数以避免极端值影响)
  116. accel_max = np.percentile(filtered_accel, 95)
  117. # 防止除以零
  118. if accel_max < 0.001:
  119. accel_max = 0.001
  120. # 计算平稳度指标: 1 - σ_a/a_max
  121. smoothness = 1.0 - (accel_std / accel_max)
  122. # 限制在0-1范围内
  123. smoothness = np.clip(smoothness, 0.0, 1.0)
  124. self.calculated_value['accelerationSmoothness'] = smoothness
  125. self.logger.info(f"加速度标准差: {accel_std:.4f} m/s²")
  126. self.logger.info(f"加速度最大值(95百分位): {accel_max:.4f} m/s²")
  127. self.logger.info(f"加速度平稳度(Acceleration Smoothness): {smoothness:.4f}")
  128. return smoothness
  129. def stop_duration_and_count(self):
  130. """计算停车次数和平均停车时长
  131. Returns:
  132. float: 平均停车时长 (秒)
  133. """
  134. # 获取速度低于阈值的时间和帧号
  135. stop_mask = self.ego_df['v'] <= self.STOP_SPEED_THRESHOLD
  136. if not any(stop_mask):
  137. self.calculated_value['stopDuration'] = 0
  138. return 0 # 如果没有停车,直接返回0
  139. stop_time_list = self.ego_df.loc[stop_mask, 'simTime'].values.tolist()
  140. stop_frame_list = self.ego_df.loc[stop_mask, 'simFrame'].values.tolist()
  141. if not stop_frame_list:
  142. return 0 # 防止空列表导致的索引错误
  143. stop_frame_group = []
  144. stop_time_group = []
  145. sum_stop_time = 0
  146. f1, t1 = stop_frame_list[0], stop_time_list[0]
  147. # 检测停车段
  148. for i in range(1, len(stop_frame_list)):
  149. if stop_frame_list[i] - stop_frame_list[i - 1] != 1: # 帧不连续
  150. f2, t2 = stop_frame_list[i - 1], stop_time_list[i - 1]
  151. # 如果停车有效(帧数差 >= FRAME_RANGE)
  152. if f2 - f1 >= self.FRAME_RANGE:
  153. stop_frame_group.append((f1, f2))
  154. stop_time_group.append((t1, t2))
  155. sum_stop_time += (t2 - t1)
  156. self.stop_count += 1
  157. # 更新起始点
  158. f1, t1 = stop_frame_list[i], stop_time_list[i]
  159. # 检查最后一段停车
  160. if len(stop_frame_list) > 0:
  161. f2, t2 = stop_frame_list[-1], stop_time_list[-1]
  162. last_frame = self.ego_df['simFrame'].values[-1]
  163. # 确保不是因为数据结束导致的停车
  164. if f2 - f1 >= self.FRAME_RANGE and f2 != last_frame:
  165. stop_frame_group.append((f1, f2))
  166. stop_time_group.append((t1, t2))
  167. sum_stop_time += (t2 - t1)
  168. self.stop_count += 1
  169. # 计算平均停车时长
  170. self.stop_duration = sum_stop_time / self.stop_count if self.stop_count > 0 else 0
  171. self.calculated_value['stopDuration'] = self.stop_duration
  172. self.logger.info(f"检测到停车次数: {self.stop_count}, 平均停车时长: {self.stop_duration:.2f}秒")
  173. return self.stop_duration
  174. def speed_utilization_ratio(self, default_speed_limit=60.0):
  175. """计算速度利用率
  176. 速度利用率度量车辆实际速度与道路限速之间的比率,
  177. 反映车辆对道路速度资源的利用程度。
  178. 计算公式: R_v = v_actual / v_limit
  179. Args:
  180. default_speed_limit: 默认道路限速 (km/h),当无法获取实际限速时使用
  181. Returns:
  182. float: 速度利用率 (0-1之间的比率)
  183. """
  184. # 获取车辆速度数据 (m/s)
  185. speeds = self.ego_df['v'].values
  186. # 尝试从数据中获取道路限速信息
  187. # 首先检查road_speed_max列,其次检查speedLimit列,最后使用默认值
  188. if 'road_speed_max' in self.ego_df.columns:
  189. speed_limits = self.ego_df['road_speed_max'].values
  190. self.logger.info("使用road_speed_max列作为道路限速信息")
  191. elif 'speedLimit' in self.ego_df.columns:
  192. speed_limits = self.ego_df['speedLimit'].values
  193. self.logger.info("使用speedLimit列作为道路限速信息")
  194. else:
  195. # 默认限速转换为 m/s
  196. default_limit_ms = default_speed_limit / 3.6
  197. speed_limits = np.full_like(speeds, default_limit_ms)
  198. self.logger.info(f"未找到道路限速信息,使用默认限速: {default_speed_limit} km/h")
  199. # 确保限速值为m/s单位,如果数据是km/h需要转换
  200. # 假设如果限速值大于30,则认为是km/h单位,需要转换为m/s
  201. if np.mean(speed_limits) > 30:
  202. speed_limits = speed_limits / 3.6
  203. self.logger.info("将限速单位从km/h转换为m/s")
  204. # 计算每一帧的速度利用率
  205. ratios = np.divide(speeds, speed_limits,
  206. out=np.zeros_like(speeds),
  207. where=speed_limits!=0)
  208. # 限制比率不超过1(超速按1计算)
  209. ratios = np.minimum(ratios, 1.0)
  210. # 计算平均速度利用率
  211. avg_ratio = np.mean(ratios)
  212. self.calculated_value['speedUtilizationRatio'] = avg_ratio
  213. self.logger.info(f"速度利用率(Speed Utilization Ratio): {avg_ratio:.4f}")
  214. return avg_ratio
  215. class EfficientManager:
  216. """高效性指标管理类"""
  217. def __init__(self, data_processed):
  218. self.data = data_processed
  219. self.efficient = EfficientRegistry(self.data)
  220. def report_statistic(self):
  221. """Generate the statistics and report the results."""
  222. # 使用注册表批量执行指标计算
  223. efficient_result = self.efficient.batch_execute()
  224. return efficient_result
  225. # ----------------------
  226. # 基础指标计算函数
  227. # ----------------------
  228. def maxSpeed(data_processed) -> dict:
  229. """计算最大速度"""
  230. efficient = Efficient(data_processed)
  231. max_speed = efficient._max_speed()
  232. return {"maxSpeed": float(max_speed)}
  233. def deviationSpeed(data_processed) -> dict:
  234. """计算速度方差"""
  235. efficient = Efficient(data_processed)
  236. deviation = efficient._deviation_speed()
  237. return {"deviationSpeed": float(deviation)}
  238. def averagedSpeed(data_processed) -> dict:
  239. """计算平均速度"""
  240. efficient = Efficient(data_processed)
  241. avg_speed = efficient.average_velocity()
  242. return {"averagedSpeed": float(avg_speed)}
  243. def stopDuration(data_processed) -> dict:
  244. """计算停车持续时间和次数"""
  245. efficient = Efficient(data_processed)
  246. stop_duration = efficient.stop_duration_and_count()
  247. return {"stopDuration": float(stop_duration)}
  248. def speedUtilizationRatio(data_processed) -> dict:
  249. """计算速度利用率"""
  250. efficient = Efficient(data_processed)
  251. ratio = efficient.speed_utilization_ratio()
  252. return {"speedUtilizationRatio": float(ratio)}
  253. def accelerationSmoothness(data_processed) -> dict:
  254. """计算加速度平稳度"""
  255. efficient = Efficient(data_processed)
  256. smoothness = efficient.acceleration_smoothness()
  257. return {"accelerationSmoothness": float(smoothness)}
  258. class EfficientManager:
  259. """高效性指标管理类"""
  260. def __init__(self, data_processed):
  261. self.data = data_processed
  262. self.logger = LogManager().get_logger()
  263. # 检查efficient_config是否为空
  264. if not hasattr(data_processed, 'efficient_config') or not data_processed.efficient_config:
  265. self.logger.warning("高效性配置为空,跳过高效性指标计算初始化")
  266. self.registry = None
  267. else:
  268. self.registry = EfficientRegistry(self.data)
  269. def report_statistic(self):
  270. """计算并报告高效性指标结果"""
  271. # 如果registry为None,直接返回空字典
  272. if self.registry is None:
  273. self.logger.info("高效性指标管理器未初始化,返回空结果")
  274. return {}
  275. efficient_result = self.registry.batch_execute()
  276. return efficient_result
  277. class EfficientRegistry:
  278. """高效性指标注册器"""
  279. def __init__(self, data_processed):
  280. self.logger = LogManager().get_logger() # 获取全局日志实例
  281. self.data = data_processed
  282. # 检查efficient_config是否为空
  283. if not hasattr(data_processed, 'efficient_config') or not data_processed.efficient_config:
  284. self.logger.warning("高效性配置为空,跳过高效性指标计算")
  285. self.eff_config = {}
  286. self.metrics = []
  287. self._registry = {}
  288. return
  289. self.eff_config = data_processed.efficient_config.get("efficient", {})
  290. self.metrics = self._extract_metrics(self.eff_config)
  291. self._registry = self._build_registry()
  292. def _extract_metrics(self, config_node: dict) -> list:
  293. """DFS遍历提取指标"""
  294. metrics = []
  295. def _recurse(node):
  296. if isinstance(node, dict):
  297. if 'name' in node and not any(isinstance(v, dict) for v in node.values()):
  298. metrics.append(node['name'])
  299. for v in node.values():
  300. _recurse(v)
  301. _recurse(config_node)
  302. self.logger.info(f'评比的高效性指标列表:{metrics}')
  303. return metrics
  304. def _build_registry(self) -> dict:
  305. """自动注册指标函数"""
  306. registry = {}
  307. for metric_name in self.metrics:
  308. try:
  309. registry[metric_name] = globals()[metric_name]
  310. except KeyError:
  311. self.logger.error(f"未实现指标函数: {metric_name}")
  312. return registry
  313. def batch_execute(self) -> dict:
  314. """批量执行指标计算"""
  315. results = {}
  316. # 如果配置为空或没有注册的指标,直接返回空结果
  317. if not hasattr(self, 'eff_config') or not self.eff_config or not self._registry:
  318. self.logger.info("高效性配置为空或无注册指标,返回空结果")
  319. return results
  320. for name, func in self._registry.items():
  321. try:
  322. result = func(self.data)
  323. results.update(result)
  324. # 新增:将每个指标的结果写入日志
  325. self.logger.info(f'高效性指标[{name}]计算结果: {result}')
  326. except Exception as e:
  327. self.logger.error(f"{name} 执行失败: {str(e)}", exc_info=True)
  328. results[name] = None
  329. self.logger.info(f'高效性指标计算结果:{results}')
  330. return results