safety.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. """
  4. 安全指标计算模块
  5. """
  6. import numpy as np
  7. import pandas as pd
  8. import math
  9. from collections import defaultdict
  10. from typing import Dict, Any, List, Optional
  11. from modules.lib.score import Score
  12. from modules.lib.log_manager import LogManager
  13. # 安全指标相关常量
  14. SAFETY_INFO = [
  15. "simTime",
  16. "simFrame",
  17. "playerId",
  18. "posX",
  19. "posY",
  20. "posH",
  21. "speedX",
  22. "speedY",
  23. "accelX",
  24. "accelY",
  25. "v",
  26. "type"
  27. ]
  28. # ----------------------
  29. # 独立指标计算函数
  30. # ----------------------
  31. def calculate_ttc(data_processed) -> dict:
  32. """计算TTC (Time To Collision)"""
  33. if data_processed is None or not hasattr(data_processed, 'object_df'):
  34. return {"TTC": None}
  35. try:
  36. safety = SafetyCalculator(data_processed)
  37. ttc_value = safety.get_ttc_value()
  38. LogManager().get_logger().info(f"安全指标[TTC]计算结果: {ttc_value}")
  39. return {"TTC": ttc_value}
  40. except Exception as e:
  41. LogManager().get_logger().error(f"TTC计算异常: {str(e)}", exc_info=True)
  42. return {"TTC": None}
  43. def calculate_mttc(data_processed) -> dict:
  44. """计算MTTC (Modified Time To Collision)"""
  45. if data_processed is None or not hasattr(data_processed, 'object_df'):
  46. return {"MTTC": None}
  47. try:
  48. safety = SafetyCalculator(data_processed)
  49. mttc_value = safety.get_mttc_value()
  50. LogManager().get_logger().info(f"安全指标[MTTC]计算结果: {mttc_value}")
  51. return {"MTTC": mttc_value}
  52. except Exception as e:
  53. LogManager().get_logger().error(f"MTTC计算异常: {str(e)}", exc_info=True)
  54. return {"MTTC": None}
  55. def calculate_thw(data_processed) -> dict:
  56. """计算THW (Time Headway)"""
  57. if data_processed is None or not hasattr(data_processed, 'object_df'):
  58. return {"THW": None}
  59. try:
  60. safety = SafetyCalculator(data_processed)
  61. thw_value = safety.get_thw_value()
  62. LogManager().get_logger().info(f"安全指标[THW]计算结果: {thw_value}")
  63. return {"THW": thw_value}
  64. except Exception as e:
  65. LogManager().get_logger().error(f"THW计算异常: {str(e)}", exc_info=True)
  66. return {"THW": None}
  67. def calculate_collisionrisk(data_processed) -> dict:
  68. """计算碰撞风险"""
  69. safety = SafetyCalculator(data_processed)
  70. collision_risk_value = safety.get_collision_risk_value()
  71. LogManager().get_logger().info(f"安全指标[collisionRisk]计算结果: {collision_risk_value}")
  72. return {"collisionRisk": collision_risk_value}
  73. def calculate_lonsd(data_processed) -> dict:
  74. """计算纵向安全距离"""
  75. safety = SafetyCalculator(data_processed)
  76. lonsd_value = safety.get_lonsd_value()
  77. LogManager().get_logger().info(f"安全指标[LonSD]计算结果: {lonsd_value}")
  78. return {"LonSD": lonsd_value}
  79. def calculate_latsd(data_processed) -> dict:
  80. """计算横向安全距离"""
  81. safety = SafetyCalculator(data_processed)
  82. latsd_value = safety.get_latsd_value()
  83. LogManager().get_logger().info(f"安全指标[LatSD]计算结果: {latsd_value}")
  84. return {"LatSD": latsd_value}
  85. def calculate_btn(data_processed) -> dict:
  86. """计算制动威胁数"""
  87. safety = SafetyCalculator(data_processed)
  88. btn_value = safety.get_btn_value()
  89. LogManager().get_logger().info(f"安全指标[BTN]计算结果: {btn_value}")
  90. return {"BTN": btn_value}
  91. def calculate_collisionseverity(data_processed) -> dict:
  92. """计算碰撞严重性"""
  93. safety = SafetyCalculator(data_processed)
  94. collision_severity_value = safety.get_collision_severity_value()
  95. LogManager().get_logger().info(f"安全指标[collisionSeverity]计算结果: {collision_severity_value}")
  96. return {"collisionSeverity": collision_severity_value}
  97. class SafetyRegistry:
  98. """安全指标注册器"""
  99. def __init__(self, data_processed):
  100. self.logger = LogManager().get_logger()
  101. self.data = data_processed
  102. self.safety_config = data_processed.safety_config["safety"]
  103. self.metrics = self._extract_metrics(self.safety_config)
  104. self._registry = self._build_registry()
  105. def _extract_metrics(self, config_node: dict) -> list:
  106. """从配置中提取指标名称"""
  107. metrics = []
  108. def _recurse(node):
  109. if isinstance(node, dict):
  110. if 'name' in node and not any(isinstance(v, dict) for v in node.values()):
  111. metrics.append(node['name'])
  112. for v in node.values():
  113. _recurse(v)
  114. _recurse(config_node)
  115. self.logger.info(f'评比的安全指标列表:{metrics}')
  116. return metrics
  117. def _build_registry(self) -> dict:
  118. """构建指标函数注册表"""
  119. registry = {}
  120. for metric_name in self.metrics:
  121. func_name = f"calculate_{metric_name.lower()}"
  122. if func_name in globals():
  123. registry[metric_name] = globals()[func_name]
  124. else:
  125. self.logger.warning(f"未实现安全指标函数: {func_name}")
  126. return registry
  127. def batch_execute(self) -> dict:
  128. """批量执行指标计算"""
  129. results = {}
  130. for name, func in self._registry.items():
  131. try:
  132. result = func(self.data)
  133. results.update(result)
  134. except Exception as e:
  135. self.logger.error(f"{name} 执行失败: {str(e)}", exc_info=True)
  136. results[name] = None
  137. self.logger.info(f'安全指标计算结果:{results}')
  138. return results
  139. class SafeManager:
  140. """安全指标管理类"""
  141. def __init__(self, data_processed):
  142. self.data = data_processed
  143. self.registry = SafetyRegistry(self.data)
  144. def report_statistic(self):
  145. """计算并报告安全指标结果"""
  146. safety_result = self.registry.batch_execute()
  147. return safety_result
  148. class SafetyCalculator:
  149. """安全指标计算类 - 兼容Safe类风格"""
  150. def __init__(self, data_processed):
  151. self.logger = LogManager().get_logger()
  152. self.data_processed = data_processed
  153. self.df = data_processed.object_df.copy()
  154. self.ego_df = data_processed.ego_data.copy() # 使用copy()避免修改原始数据
  155. self.obj_id_list = data_processed.obj_id_list
  156. self.metric_list = [
  157. 'TTC', 'MTTC', 'THW', 'LonSD', 'LatSD', 'BTN', 'collisionRisk', 'collisionSeverity'
  158. ]
  159. # 初始化默认值
  160. self.calculated_value = {
  161. "TTC": 10.0,
  162. "MTTC": 10.0,
  163. "THW": 10.0,
  164. "LatSD": 3.0,
  165. "BTN": 1.0,
  166. "collisionRisk": 0.0,
  167. "collisionSeverity": 0.0,
  168. }
  169. self.time_list = self.ego_df['simTime'].values.tolist()
  170. self.frame_list = self.ego_df['simFrame'].values.tolist()
  171. self.collisionRisk = 0
  172. self.empty_flag = True
  173. self.logger.info("SafetyCalculator初始化完成,场景中包含自车的目标物一共为: %d", len(self.obj_id_list))
  174. if len(self.obj_id_list) > 1:
  175. self.unsafe_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  176. self.unsafe_time_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  177. self.unsafe_dist_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  178. self.unsafe_acce_drac_df = pd.DataFrame(
  179. columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  180. self.unsafe_acce_xtn_df = pd.DataFrame(
  181. columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  182. self.unsafe_prob_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  183. self.most_dangerous = {}
  184. self.pass_percent = {}
  185. self.logger.info("开始执行安全参数计算 _safe_param_cal_new")
  186. self._safe_param_cal_new()
  187. self.logger.info("安全参数计算完成")
  188. def _safe_param_cal_new(self):
  189. self.logger.debug("进入 _safe_param_cal_new 方法")
  190. # 直接复用Safe类的实现
  191. Tc = 0.3 # 安全距离
  192. rho = self.data_processed.vehicle_config["RHO"]
  193. ego_accel_max = self.data_processed.vehicle_config["EGO_ACCEL_MAX"]
  194. obj_decel_max = self.data_processed.vehicle_config["OBJ_DECEL_MAX"]
  195. ego_decel_min = self.data_processed.vehicle_config["EGO_DECEL_MIN"]
  196. ego_decel_lon_max = self.data_processed.vehicle_config["EGO_DECEL_LON_MAX"]
  197. ego_decel_lat_max = self.data_processed.vehicle_config["EGO_DECEL_LAT_MAX"]
  198. obj_dict = defaultdict(dict)
  199. obj_data_dict = self.df.to_dict('records')
  200. for item in obj_data_dict:
  201. obj_dict[item['simFrame']][item['playerId']] = item
  202. df_list = []
  203. EGO_PLAYER_ID = 1
  204. for frame_num in self.frame_list:
  205. ego_data = obj_dict[frame_num][EGO_PLAYER_ID]
  206. v1 = ego_data['v']
  207. x1 = ego_data['posX']
  208. y1 = ego_data['posY']
  209. h1 = ego_data['posH']
  210. v_x1 = ego_data['speedX']
  211. v_y1 = ego_data['speedY']
  212. a_x1 = ego_data['accelX']
  213. a_y1 = ego_data['accelY']
  214. for playerId in self.obj_id_list:
  215. if playerId == EGO_PLAYER_ID:
  216. continue
  217. try:
  218. obj_data = obj_dict[frame_num][playerId]
  219. except KeyError:
  220. continue
  221. x2 = obj_data['posX']
  222. y2 = obj_data['posY']
  223. dist = self.dist(x1, y1, x2, y2)
  224. obj_data['dist'] = dist
  225. v_x2 = obj_data['speedX']
  226. v_y2 = obj_data['speedY']
  227. v2 = obj_data['v']
  228. a_x2 = obj_data['accelX']
  229. a_y2 = obj_data['accelY']
  230. dx, dy = x2 - x1, y2 - y1
  231. # 计算目标车相对于自车的方位角
  232. beta = math.atan2(dy, dx)
  233. # 将全局坐标系下的相对位置向量转换到自车坐标系
  234. # 自车坐标系:车头方向为x轴正方向,车辆左侧为y轴正方向
  235. h1_rad = math.radians(90 - h1) # 转换为与x轴的夹角
  236. # 坐标变换
  237. lon_d = dx * math.cos(h1_rad) + dy * math.sin(h1_rad) # 纵向距离(前为正,后为负)
  238. lat_d = abs(-dx * math.sin(h1_rad) + dy * math.cos(h1_rad)) # 横向距离(取绝对值)
  239. obj_dict[frame_num][playerId]['lon_d'] = lon_d
  240. obj_dict[frame_num][playerId]['lat_d'] = lat_d
  241. if lon_d > 100 or lon_d < -5 or lat_d > 4:
  242. continue
  243. self.empty_flag = False
  244. vx, vy = v_x1 - v_x2, v_y1 - v_y2
  245. ax, ay = a_x2 - a_x1, a_y2 - a_y1
  246. v_ego_p = self._cal_v_ego_projection(dx, dy, v_x1, v_y1)
  247. v_obj_p = self._cal_v_ego_projection(dx, dy, v_x2, v_y2)
  248. vrel_projection_in_dist = self._cal_v_projection(dx, dy, vx, vy)
  249. arel_projection_in_dist = self._cal_a_projection(dx, dy, vx, vy, ax, ay, x1, y1, x2, y2, v_x1, v_y1,
  250. v_x2, v_y2)
  251. obj_dict[frame_num][playerId]['vrel_projection_in_dist'] = vrel_projection_in_dist
  252. obj_dict[frame_num][playerId]['arel_projection_in_dist'] = arel_projection_in_dist
  253. obj_dict[frame_num][playerId]['v_ego_projection_in_dist'] = v_ego_p
  254. obj_dict[frame_num][playerId]['v_obj_projection_in_dist'] = v_obj_p
  255. obj_type = obj_data['type']
  256. TTC = self._cal_TTC(dist, vrel_projection_in_dist) if abs(vrel_projection_in_dist) > 1e-6 else None
  257. MTTC = self._cal_MTTC(dist, vrel_projection_in_dist, arel_projection_in_dist)
  258. THW = self._cal_THW(dist, v_ego_p) if abs(v_ego_p) > 1e-6 else None
  259. LonSD = self._cal_longitudinal_safe_dist(v_ego_p, v_obj_p, rho, ego_accel_max, ego_decel_min, obj_decel_max)
  260. lat_dist = 0.5
  261. v_right = v1
  262. v_left = v2
  263. a_right_lat_brake_min = 1
  264. a_left_lat_brake_min = 1
  265. a_lat_max = 5
  266. LatSD = self._cal_lateral_safe_dist(lat_dist, v_right, v_left, rho, a_right_lat_brake_min,
  267. a_left_lat_brake_min, a_lat_max)
  268. # 使用自车坐标系下的纵向加速度
  269. lon_a1 = a_x1 * math.cos(h1_rad) + a_y1 * math.sin(h1_rad)
  270. lon_a2 = a_x2 * math.cos(h1_rad) + a_y2 * math.sin(h1_rad)
  271. lon_a = abs(lon_a1 - lon_a2)
  272. lon_d = max(0.1, lon_d) # 确保纵向距离为正
  273. lon_v = v_x1 * math.cos(h1_rad) + v_y1 * math.sin(h1_rad)
  274. BTN = self._cal_BTN_new(lon_a1, lon_a, lon_d, lon_v, ego_decel_lon_max)
  275. # 使用自车坐标系下的横向加速度
  276. lat_a1 = -a_x1 * math.sin(h1_rad) + a_y1 * math.cos(h1_rad)
  277. lat_a2 = -a_x2 * math.sin(h1_rad) + a_y2 * math.cos(h1_rad)
  278. lat_a = abs(lat_a1 - lat_a2)
  279. lat_v = -v_x1 * math.sin(h1_rad) + v_y1 * math.cos(h1_rad)
  280. obj_dict[frame_num][playerId]['lat_v_rel'] = lat_v - (-v_x2 * math.sin(h1_rad) + v_y2 * math.cos(h1_rad))
  281. obj_dict[frame_num][playerId]['lon_v_rel'] = lon_v - (v_x2 * math.cos(h1_rad) + v_y2 * math.sin(h1_rad))
  282. TTC = None if (TTC is None or TTC < 0) else TTC
  283. MTTC = None if (MTTC is None or MTTC < 0) else MTTC
  284. THW = None if (THW is None or THW < 0) else THW
  285. obj_dict[frame_num][playerId]['TTC'] = TTC
  286. obj_dict[frame_num][playerId]['MTTC'] = MTTC
  287. obj_dict[frame_num][playerId]['THW'] = THW
  288. obj_dict[frame_num][playerId]['LonSD'] = LonSD
  289. obj_dict[frame_num][playerId]['LatSD'] = LatSD
  290. obj_dict[frame_num][playerId]['BTN'] = abs(BTN)
  291. collisionSeverity = 0
  292. pr_death = 0
  293. collisionRisk = 0
  294. obj_dict[frame_num][playerId]['collisionSeverity'] = collisionSeverity * 100
  295. obj_dict[frame_num][playerId]['pr_death'] = pr_death * 100
  296. obj_dict[frame_num][playerId]['collisionRisk'] = collisionRisk * 100
  297. df_fnum = pd.DataFrame(obj_dict[frame_num].values())
  298. df_list.append(df_fnum)
  299. df_safe = pd.concat(df_list)
  300. col_list = ['simTime', 'simFrame', 'playerId',
  301. 'TTC', 'MTTC', 'THW', 'LonSD', 'LatSD', 'BTN',
  302. 'collisionSeverity', 'pr_death', 'collisionRisk']
  303. self.df_safe = df_safe[col_list].reset_index(drop=True)
  304. def _cal_v_ego_projection(self, dx, dy, v_x1, v_y1):
  305. # 计算 AB 连线的向量 AB
  306. # dx = x2 - x1
  307. # dy = y2 - y1
  308. # 计算 AB 连线的模长 |AB|
  309. AB_mod = math.sqrt(dx ** 2 + dy ** 2)
  310. # 计算 AB 连线的单位向量 U_AB
  311. U_ABx = dx / AB_mod
  312. U_ABy = dy / AB_mod
  313. # 计算 A 在 AB 连线上的速度 V1_on_AB
  314. V1_on_AB = v_x1 * U_ABx + v_y1 * U_ABy
  315. return V1_on_AB
  316. def _cal_v_projection(self, dx, dy, vx, vy):
  317. # 计算 AB 连线的向量 AB
  318. # dx = x2 - x1
  319. # dy = y2 - y1
  320. # 计算 AB 连线的模长 |AB|
  321. AB_mod = math.sqrt(dx ** 2 + dy ** 2)
  322. # 计算 AB 连线的单位向量 U_AB
  323. U_ABx = dx / AB_mod
  324. U_ABy = dy / AB_mod
  325. # 计算 A 相对于 B 的速度 V_relative
  326. # vx = vx1 - vx2
  327. # vy = vy1 - vy2
  328. # 计算 A 相对于 B 在 AB 连线上的速度 V_on_AB
  329. V_on_AB = vx * U_ABx + vy * U_ABy
  330. return V_on_AB
  331. def _cal_a_projection(self, dx, dy, vx, vy, ax, ay, x1, y1, x2, y2, v_x1, v_y1, v_x2, v_y2):
  332. # 计算 AB 连线的向量 AB
  333. # dx = x2 - x1
  334. # dy = y2 - y1
  335. # 计算 θ
  336. V_mod = math.sqrt(vx ** 2 + vy ** 2)
  337. AB_mod = math.sqrt(dx ** 2 + dy ** 2)
  338. if V_mod == 0 or AB_mod == 0:
  339. return 0
  340. cos_theta = (vx * dx + vy * dy) / (V_mod * AB_mod)
  341. theta = math.acos(cos_theta)
  342. # 计算 AB 连线的模长 |AB|
  343. AB_mod = math.sqrt(dx ** 2 + dy ** 2)
  344. # 计算 AB 连线的单位向量 U_AB
  345. U_ABx = dx / AB_mod
  346. U_ABy = dy / AB_mod
  347. # 计算 A 相对于 B 的加速度 a_relative
  348. # ax = ax1 - ax2
  349. # ay = ay1 - ay2
  350. # 计算 A 相对于 B 在 AB 连线上的加速度 a_on_AB
  351. a_on_AB = ax * U_ABx + ay * U_ABy
  352. VA = np.array([v_x1, v_y1])
  353. VB = np.array([v_x2, v_y2])
  354. D_A = np.array([x1, y1])
  355. D_B = np.array([x2, y2])
  356. V_r = VA - VB
  357. V = np.linalg.norm(V_r)
  358. w = self._cal_relative_angular_v(theta, D_A, D_B, VA, VB)
  359. a_on_AB_back = self._calculate_derivative(a_on_AB, w, V, theta)
  360. return a_on_AB_back
  361. # 计算相对加速度
  362. def _calculate_derivative(self, a, w, V, theta):
  363. # 计算(V×cos(θ))'的值
  364. # derivative = a * math.cos(theta) - w * V * math.sin(theta)theta
  365. derivative = a - w * V * math.sin(theta)
  366. return derivative
  367. def _cal_relative_angular_v(self, theta, A, B, VA, VB):
  368. dx = A[0] - B[0]
  369. dy = A[1] - B[1]
  370. dvx = VA[0] - VB[0]
  371. dvy = VA[1] - VB[1]
  372. # (dx * dvy - dy * dvx)
  373. angular_velocity = math.sqrt(dvx ** 2 + dvy ** 2) * math.sin(theta) / math.sqrt(dx ** 2 + dy ** 2)
  374. return angular_velocity
  375. def _death_pr(self, obj_type, v_relative):
  376. if obj_type == 5:
  377. p_death = 1 / (1 + np.exp(7.723 - 0.15 * v_relative))
  378. else:
  379. p_death = 1 / (1 + np.exp(8.192 - 0.12 * v_relative))
  380. return p_death
  381. def _cal_collisionRisk_level(self, obj_type, v_relative, collisionSeverity):
  382. if obj_type == 5:
  383. p_death = 1 / (1 + np.exp(7.723 - 0.15 * v_relative))
  384. else:
  385. p_death = 1 / (1 + np.exp(8.192 - 0.12 * v_relative))
  386. collisionRisk = 0.4 * p_death + 0.6 * collisionSeverity
  387. return collisionRisk
  388. # 求两车之间当前距离
  389. def dist(self, x1, y1, x2, y2):
  390. dist = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  391. return dist
  392. # TTC (time to collision)
  393. def _cal_TTC(self, dist, vrel_projection_in_dist):
  394. if vrel_projection_in_dist == 0:
  395. return math.inf
  396. TTC = dist / vrel_projection_in_dist
  397. return TTC
  398. def _cal_MTTC(self, dist, vrel_projection_in_dist, arel_projection_in_dist):
  399. MTTC = math.nan
  400. if arel_projection_in_dist != 0:
  401. tmp = vrel_projection_in_dist ** 2 + 2 * arel_projection_in_dist * dist
  402. if tmp < 0:
  403. return math.nan
  404. t1 = (-1 * vrel_projection_in_dist - math.sqrt(tmp)) / arel_projection_in_dist
  405. t2 = (-1 * vrel_projection_in_dist + math.sqrt(tmp)) / arel_projection_in_dist
  406. if t1 > 0 and t2 > 0:
  407. if t1 >= t2:
  408. MTTC = t2
  409. elif t1 < t2:
  410. MTTC = t1
  411. elif t1 > 0 and t2 <= 0:
  412. MTTC = t1
  413. elif t1 <= 0 and t2 > 0:
  414. MTTC = t2
  415. if arel_projection_in_dist == 0 and vrel_projection_in_dist > 0:
  416. MTTC = dist / vrel_projection_in_dist
  417. return MTTC
  418. # THW (time headway)
  419. def _cal_THW(self, dist, v_ego_projection_in_dist):
  420. if not v_ego_projection_in_dist:
  421. THW = None
  422. else:
  423. THW = dist / v_ego_projection_in_dist
  424. return THW
  425. def velocity(self, v_x, v_y):
  426. v = math.sqrt(v_x ** 2 + v_y ** 2) * 3.6
  427. return v
  428. def _cal_longitudinal_safe_dist(self, v_ego_p, v_obj_p, rho, ego_accel_max, ego_decel_min, ego_decel_max):
  429. lon_dist_min = v_ego_p * rho + ego_accel_max * (rho ** 2) / 2 + (v_ego_p + rho * ego_accel_max) ** 2 / (
  430. 2 * ego_decel_min) - v_obj_p ** 2 / (2 * ego_decel_max)
  431. return lon_dist_min
  432. def _cal_lateral_safe_dist(self, lat_dist, v_right, v_left, rho, a_right_lat_brake_min,
  433. a_left_lat_brake_min, a_lat_max):
  434. # 检查除数是否为零
  435. if a_right_lat_brake_min == 0 or a_left_lat_brake_min == 0:
  436. return self._default_value('LatSD') # 返回默认值
  437. v_right_rho = v_right + rho * a_lat_max
  438. v_left_rho = v_left + rho * a_lat_max
  439. dist_min = lat_dist + (
  440. (v_right + v_right_rho) * rho / 2
  441. + v_right_rho**2 / a_right_lat_brake_min / 2
  442. + ((v_left + v_right_rho) * rho / 2)
  443. + v_left_rho**2 / a_left_lat_brake_min / 2
  444. )
  445. return dist_min
  446. # DRAC (decelerate required avoid collision)
  447. def _cal_DRAC(self, dist, vrel_projection_in_dist, len1, len2, width1, width2, o_x1, o_x2):
  448. dist_length = dist - (len2 / 2 - o_x2 + len1 / 2 + o_x1) # 4.671
  449. if dist_length < 0:
  450. dist_width = dist - (width2 / 2 + width1 / 2)
  451. if dist_width < 0:
  452. return math.inf
  453. else:
  454. d = dist_width
  455. else:
  456. d = dist_length
  457. DRAC = vrel_projection_in_dist ** 2 / (2 * d)
  458. return DRAC
  459. # BTN (brake threat number)
  460. def _cal_BTN_new(self, lon_a1, lon_a, lon_d, lon_v, ego_decel_lon_max):
  461. BTN = (lon_a1 + lon_a - lon_v ** 2 / (2 * lon_d)) / ego_decel_lon_max # max_ay为此车可实现的最大纵向加速度,目前为本次实例里的最大值
  462. return BTN
  463. # STN (steer threat number)
  464. def _cal_STN_new(self, ttc, lat_a1, lat_a, lat_d, lat_v, ego_decel_lat_max, width1, width2):
  465. STN = (lat_a1 + lat_a + 2 / ttc ** 2 * (lat_d + abs(ego_decel_lat_max * lat_v) * (
  466. width1 + width2) / 2 + abs(lat_v * ttc))) / ego_decel_lat_max
  467. return STN
  468. # BTN (brake threat number)
  469. def cal_BTN(self, a_y1, ay, dy, vy, max_ay):
  470. BTN = (a_y1 + ay - vy ** 2 / (2 * dy)) / max_ay # max_ay为此车可实现的最大纵向加速度,目前为本次实例里的最大值
  471. return BTN
  472. # STN (steer threat number)
  473. def cal_STN(self, ttc, a_x1, ax, dx, vx, max_ax, width1, width2):
  474. STN = (a_x1 + ax + 2 / ttc ** 2 * (dx + np.sign(max_ax * vx) * (width1 + width2) / 2 + vx * ttc)) / max_ax
  475. return STN
  476. # 追尾碰撞风险
  477. def _normal_distribution(self, x):
  478. mean = 1.32
  479. std_dev = 0.26
  480. return (1 / (math.sqrt(std_dev * 2 * math.pi))) * math.exp(-0.5 * (x - mean) ** 2 / std_dev)
  481. def continuous_group(self, df):
  482. time_list = df['simTime'].values.tolist()
  483. frame_list = df['simFrame'].values.tolist()
  484. group_time = []
  485. group_frame = []
  486. sub_group_time = []
  487. sub_group_frame = []
  488. for i in range(len(frame_list)):
  489. if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
  490. sub_group_time.append(time_list[i])
  491. sub_group_frame.append(frame_list[i])
  492. else:
  493. group_time.append(sub_group_time)
  494. group_frame.append(sub_group_frame)
  495. sub_group_time = [time_list[i]]
  496. sub_group_frame = [frame_list[i]]
  497. group_time.append(sub_group_time)
  498. group_frame.append(sub_group_frame)
  499. group_time = [g for g in group_time if len(g) >= 2]
  500. group_frame = [g for g in group_frame if len(g) >= 2]
  501. # 输出图表值
  502. time = [[g[0], g[-1]] for g in group_time]
  503. frame = [[g[0], g[-1]] for g in group_frame]
  504. unfunc_time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
  505. unfunc_frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
  506. unfunc_df = pd.concat([unfunc_time_df, unfunc_frame_df], axis=1)
  507. return unfunc_df
  508. # 统计最危险的指标
  509. def _safe_statistic_most_dangerous(self):
  510. min_list = ['TTC', 'MTTC', 'THW', 'LonSD', 'LatSD']
  511. max_list = ['BTN', 'collisionRisk', 'collisionSeverity']
  512. result = {}
  513. for metric in min_list:
  514. if metric in self.metric_list:
  515. if metric in self.df.columns:
  516. val = self.df[metric].min()
  517. result[metric] = float(val) if pd.notnull(val) else self._default_value(metric)
  518. else:
  519. result[metric] = self._default_value(metric)
  520. for metric in max_list:
  521. if metric in self.metric_list:
  522. if metric in self.df.columns:
  523. val = self.df[metric].max()
  524. result[metric] = float(val) if pd.notnull(val) else self._default_value(metric)
  525. else:
  526. result[metric] = self._default_value(metric)
  527. return result
  528. def _safe_no_obj_statistic(self):
  529. # 仅有自车时的默认值
  530. result = {metric: self._default_value(metric) for metric in self.metric_list}
  531. return result
  532. def _default_value(self, metric):
  533. # 统一默认值
  534. defaults = {
  535. 'TTC': 10.0,
  536. 'MTTC': 4.2,
  537. 'THW': 2.1,
  538. 'LonSD': 10.0,
  539. 'LatSD': 2.0,
  540. 'BTN': 1.0,
  541. 'collisionRisk': 0.0,
  542. 'collisionSeverity': 0.0
  543. }
  544. return defaults.get(metric, None)
  545. def report_statistic(self):
  546. if len(self.obj_id_list) == 1:
  547. safety_result = self._safe_no_obj_statistic()
  548. else:
  549. safety_result = self._safe_statistic_most_dangerous()
  550. evaluator = Score(self.data_processed.safety_config)
  551. result = evaluator.evaluate(safety_result)
  552. print("\n[安全性表现及得分情况]")
  553. return result
  554. def get_ttc_value(self) -> float:
  555. if self.empty_flag or self.df_safe is None:
  556. return self._default_value('TTC')
  557. ttc_values = self.df_safe['TTC'].dropna()
  558. return float(ttc_values.min()) if not ttc_values.empty else self._default_value('TTC')
  559. def get_mttc_value(self) -> float:
  560. if self.empty_flag or self.df_safe is None:
  561. return self._default_value('MTTC')
  562. mttc_values = self.df_safe['MTTC'].dropna()
  563. return float(mttc_values.min()) if not mttc_values.empty else self._default_value('MTTC')
  564. def get_thw_value(self) -> float:
  565. if self.empty_flag or self.df_safe is None:
  566. return self._default_value('THW')
  567. thw_values = self.df_safe['THW'].dropna()
  568. return float(thw_values.min()) if not thw_values.empty else self._default_value('THW')
  569. def get_lonsd_value(self) -> float:
  570. if self.empty_flag or self.df_safe is None:
  571. return self._default_value('LonSD')
  572. lonsd_values = self.df_safe['LonSD'].dropna()
  573. return float(lonsd_values.mean()) if not lonsd_values.empty else self._default_value('LonSD')
  574. def get_latsd_value(self) -> float:
  575. if self.empty_flag or self.df_safe is None:
  576. return self._default_value('LatSD')
  577. latsd_values = self.df_safe['LatSD'].dropna()
  578. # 使用最小值而非平均值,与safety1.py保持一致
  579. return float(latsd_values.min()) if not latsd_values.empty else self._default_value('LatSD')
  580. def get_btn_value(self) -> float:
  581. if self.empty_flag or self.df_safe is None:
  582. return self._default_value('BTN')
  583. btn_values = self.df_safe['BTN'].dropna()
  584. return float(btn_values.max()) if not btn_values.empty else self._default_value('BTN')
  585. def get_collision_risk_value(self) -> float:
  586. if self.empty_flag or self.df_safe is None:
  587. return self._default_value('collisionRisk')
  588. risk_values = self.df_safe['collisionRisk'].dropna()
  589. return float(risk_values.max()) if not risk_values.empty else self._default_value('collisionRisk')
  590. def get_collision_severity_value(self) -> float:
  591. if self.empty_flag or self.df_safe is None:
  592. return self._default_value('collisionSeverity')
  593. severity_values = self.df_safe['collisionSeverity'].dropna()
  594. return float(severity_values.max()) if not severity_values.empty else self._default_value('collisionSeverity')