123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2024 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn)
- @Data: 2024/10/17
- @Last Modified: 2024/10/17
- @Summary: Evaluation functions
- """
- import os
- import numpy as np
- import pandas as pd
- import yaml
- from modules.lib.log_manager import LogManager
- # from lib import log # 确保这个路径是正确的,或者调整它
- # logger = None # 初始化为 None
- class DataPreprocessing:
- def __init__(self, data_path, config_path):
- # Initialize paths and data containers
- # self.logger = log.get_logger()
-
- self.data_path = data_path
- self.case_name = os.path.basename(os.path.normpath(data_path))
- self.config_path = config_path
- # Initialize DataFrames
- self.object_df = pd.DataFrame()
- self.driver_ctrl_df = pd.DataFrame()
- self.vehicle_sys_df = pd.DataFrame()
- self.ego_data_df = pd.DataFrame()
- # Environment data
- self.lane_info_df = pd.DataFrame()
- self.road_mark_df = pd.DataFrame()
- self.road_pos_df = pd.DataFrame()
- self.traffic_light_df = pd.DataFrame()
- self.traffic_signal_df = pd.DataFrame()
- self.vehicle_config = {}
- self.safety_config = {}
- self.comfort_config = {}
- self.efficient_config = {}
- self.function_config = {}
- self.traffic_config = {}
- # Initialize data for later processing
- self.obj_data = {}
- self.ego_data = {}
- self.obj_id_list = []
- # Data quality level
- self.data_quality_level = 15
- # Process mode and prepare report information
- self._process_mode()
- self._get_yaml_config()
- self.report_info = self._get_report_info(self.obj_data.get(1, pd.DataFrame()))
- def _process_mode(self):
- """Handle different processing modes."""
- self._real_process_object_df()
- def _get_yaml_config(self):
- with open(self.config_path, 'r') as f:
- full_config = yaml.safe_load(f)
- modules = ["vehicle", "T_threshold", "safety", "comfort", "efficient", "function", "traffic"]
-
- # 1. 初始化 vehicle_config(不涉及 T_threshold 合并)
- self.vehicle_config = full_config[modules[0]]
-
- # 2. 定义 T_threshold_config(封装为字典)
- T_threshold_config = {"T_threshold": full_config[modules[1]]}
-
- # 3. 统一处理需要合并 T_threshold 的模块
- # 3.1 safety_config
- self.safety_config = {"safety": full_config[modules[2]]}
- self.safety_config.update(T_threshold_config)
-
- # 3.2 comfort_config
- self.comfort_config = {"comfort": full_config[modules[3]]}
- self.comfort_config.update(T_threshold_config)
-
- # 3.3 efficient_config
- self.efficient_config = {"efficient": full_config[modules[4]]}
- self.efficient_config.update(T_threshold_config)
-
- # 3.4 function_config
- self.function_config = {"function": full_config[modules[5]]}
- self.function_config.update(T_threshold_config)
-
- # 3.5 traffic_config
- self.traffic_config = {"traffic": full_config[modules[6]]}
- self.traffic_config.update(T_threshold_config)
- @staticmethod
- def cal_velocity(lat_v, lon_v):
- """Calculate resultant velocity from lateral and longitudinal components."""
- return np.sqrt(lat_v**2 + lon_v**2)
- def _real_process_object_df(self):
- """Process the object DataFrame."""
- try:
- # 读取 CSV 文件
- merged_csv_path = os.path.join(self.data_path, "merged_ObjState.csv")
-
- # 检查文件是否存在
- if not os.path.exists(merged_csv_path):
- logger = LogManager().get_logger()
- logger.error(f"文件不存在: {merged_csv_path}")
- raise FileNotFoundError(f"文件不存在: {merged_csv_path}")
-
- self.object_df = pd.read_csv(
- merged_csv_path,
- dtype={"simTime": float},
- engine="python",
- on_bad_lines="skip", # 自动跳过异常行
- na_values=["","NA","null","NaN"] # 明确处理缺失值
- ).drop_duplicates(subset=["simTime", "simFrame", "playerId"])
- self.object_df.columns = [col.replace("+AF8-", "_") for col in self.object_df.columns]
- data = self.object_df.copy()
- # 使用向量化操作计算速度和加速度,提高性能
- data["lat_v"] = data["speedY"] * 1
- data["lon_v"] = data["speedX"] * 1
- # 使用向量化操作代替 apply
- data["v"] = np.sqrt(data["lat_v"]**2 + data["lon_v"]**2)
- # 计算加速度分量
- data["lat_acc"] = data["accelY"] * 1
- data["lon_acc"] = data["accelX"] * 1
- # 使用向量化操作代替 apply
- data["accel"] = np.sqrt(data["lat_acc"]**2 + data["lon_acc"]**2)
- # Drop rows with missing 'type' and reset index
- data = data.dropna(subset=["type"])
- data.reset_index(drop=True, inplace=True)
- self.object_df = data.copy()
- # Calculate respective parameters for each object
- for obj_id, obj_data in data.groupby("playerId"):
- self.obj_data[obj_id] = self._calculate_object_parameters(obj_data)
- # Get object id list
- EGO_PLAYER_ID = 1
- self.obj_id_list = list(self.obj_data.keys())
- self.ego_data = self.obj_data[EGO_PLAYER_ID]
- # 添加这一行:处理自车数据,进行坐标系转换
- self.ego_data = self.process_ego_data(self.ego_data)
- except Exception as e:
- logger = LogManager().get_logger()
- logger.error(f"处理对象数据帧时出错: {e}", exc_info=True)
- raise
- def _calculate_object_parameters(self, obj_data):
- """Calculate additional parameters for a single object."""
- obj_data = obj_data.copy()
-
- # 确保数据按时间排序
- obj_data = obj_data.sort_values(by="simTime").reset_index(drop=True)
-
- obj_data["time_diff"] = obj_data["simTime"].diff()
-
- # 处理可能的零时间差
- zero_time_diff = obj_data["time_diff"] == 0
- if zero_time_diff.any():
- logger = LogManager().get_logger()
- logger.warning(f"检测到零时间差: {sum(zero_time_diff)} 行")
- # 将零时间差替换为最小非零时间差或一个小的默认值
- min_non_zero = obj_data.loc[~zero_time_diff, "time_diff"].min() if (~zero_time_diff).any() else 0.01
- obj_data.loc[zero_time_diff, "time_diff"] = min_non_zero
- obj_data["lat_acc_diff"] = obj_data["lat_acc"].diff()
- obj_data["lon_acc_diff"] = obj_data["lon_acc"].diff()
- obj_data["yawrate_diff"] = obj_data["speedH"].diff()
- obj_data["lat_acc_roc"] = (
- obj_data["lat_acc_diff"] / obj_data["time_diff"]
- ).replace([np.inf, -np.inf], [9999, -9999])
- obj_data["lon_acc_roc"] = (
- obj_data["lon_acc_diff"] / obj_data["time_diff"]
- ).replace([np.inf, -np.inf], [9999, -9999])
- obj_data["accelH"] = (
- obj_data["yawrate_diff"] / obj_data["time_diff"]
- ).replace([np.inf, -np.inf], [9999, -9999])
- return obj_data
- def _get_driver_ctrl_data(self, df):
- """
- Process and get driver control information.
- Args:
- df: A DataFrame containing driver control data.
- Returns:
- A dictionary of driver control info.
- """
- driver_ctrl_data = {
- "time_list": df["simTime"].round(2).tolist(),
- "frame_list": df["simFrame"].tolist(),
- "brakePedal_list": (
- (df["brakePedal"] * 100).tolist()
- if df["brakePedal"].max() < 1
- else df["brakePedal"].tolist()
- ),
- "throttlePedal_list": (
- (df["throttlePedal"] * 100).tolist()
- if df["throttlePedal"].max() < 1
- else df["throttlePedal"].tolist()
- ),
- "steeringWheel_list": df["steeringWheel"].tolist(),
- }
- return driver_ctrl_data
- def _get_report_info(self, df):
- """Extract report information from the DataFrame."""
- mileage = self._mileage_cal(df)
- duration = self._duration_cal(df)
- return {"mileage": mileage, "duration": duration}
- def _mileage_cal(self, df):
- """Calculate mileage based on the driving data."""
- if len(df) < 2:
- return 0.0 # 数据不足,无法计算里程
-
- if df["travelDist"].nunique() == 1:
- # 创建临时DataFrame进行计算,避免修改原始数据
- temp_df = df.copy()
- temp_df["time_diff"] = temp_df["simTime"].diff().fillna(0)
- temp_df["avg_speed"] = (temp_df["v"] + temp_df["v"].shift()).fillna(0) / 2
- temp_df["distance_increment"] = temp_df["avg_speed"] * temp_df["time_diff"] / 3.6
- temp_df["travelDist"] = temp_df["distance_increment"].cumsum().fillna(0)
- mileage = round(temp_df["travelDist"].iloc[-1] - temp_df["travelDist"].iloc[0], 2)
- return mileage
- else:
- # 如果travelDist已经有多个值,直接计算最大值和最小值的差
- return round(df["travelDist"].max() - df["travelDist"].min(), 2)
- return 0.0 # Return 0 if travelDist is not valid
- def _duration_cal(self, df):
- """Calculate duration of the driving data."""
- return df["simTime"].iloc[-1] - df["simTime"].iloc[0]
- def process_ego_data(self, ego_data):
- """处理自车数据,包括坐标系转换等"""
- if ego_data is None or len(ego_data) == 0:
- logger = LogManager().get_logger()
- logger.warning("自车数据为空,无法进行坐标系转换")
- return ego_data
-
- # 创建副本避免修改原始数据
- ego_data = ego_data.copy()
-
- # 添加坐标系转换:将东北天坐标系下的加速度和速度转换为车辆坐标系下的值
- # 使用车辆航向角进行转换
- # 注意:与safety.py保持一致,使用(90 - heading)作为与x轴的夹角
- ego_data['heading_rad'] = np.deg2rad(90 - ego_data['posH']) # 转换为与x轴的夹角
-
- # 使用向量化操作计算车辆坐标系下的纵向和横向加速度
- ego_data['lon_acc_vehicle'] = ego_data['accelX'] * np.cos(ego_data['heading_rad']) + \
- ego_data['accelY'] * np.sin(ego_data['heading_rad'])
- ego_data['lat_acc_vehicle'] = -ego_data['accelX'] * np.sin(ego_data['heading_rad']) + \
- ego_data['accelY'] * np.cos(ego_data['heading_rad'])
-
- # 使用向量化操作计算车辆坐标系下的纵向和横向速度
- ego_data['lon_v_vehicle'] = ego_data['speedX'] * np.cos(ego_data['heading_rad']) + \
- ego_data['speedY'] * np.sin(ego_data['heading_rad'])
- ego_data['lat_v_vehicle'] = -ego_data['speedX'] * np.sin(ego_data['heading_rad']) + \
- ego_data['speedY'] * np.cos(ego_data['heading_rad'])
-
- # 将原始的东北天坐标系加速度和速度保留,但在其他模块中可以直接使用车辆坐标系的值
- ego_data['lon_acc'] = ego_data['lon_acc_vehicle']
- ego_data['lat_acc'] = ego_data['lat_acc_vehicle']
-
- # 记录日志
- logger = LogManager().get_logger()
- logger.info("已将加速度和速度转换为车辆坐标系")
-
- return ego_data
|