safety.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. """
  4. 安全指标计算模块
  5. """
  6. import numpy as np
  7. import pandas as pd
  8. import math
  9. from collections import defaultdict
  10. from typing import Dict, Any, List, Optional
  11. from modules.lib.score import Score
  12. from modules.lib.log_manager import LogManager
  13. # 安全指标相关常量
  14. SAFETY_INFO = [
  15. "simTime",
  16. "simFrame",
  17. "playerId",
  18. "posX",
  19. "posY",
  20. "posH",
  21. "speedX",
  22. "speedY",
  23. "accelX",
  24. "accelY",
  25. "v",
  26. "type"
  27. ]
  28. # ----------------------
  29. # 独立指标计算函数
  30. # ----------------------
  31. def calculate_ttc(data_processed) -> dict:
  32. """计算TTC (Time To Collision)"""
  33. if data_processed is None or not hasattr(data_processed, 'object_df'):
  34. return {"TTC": None}
  35. try:
  36. safety = SafetyCalculator(data_processed)
  37. ttc_value = safety.get_ttc_value()
  38. LogManager().get_logger().info(f"安全指标[TTC]计算结果: {ttc_value}")
  39. return {"TTC": ttc_value}
  40. except Exception as e:
  41. LogManager().get_logger().error(f"TTC计算异常: {str(e)}", exc_info=True)
  42. return {"TTC": None}
  43. def calculate_mttc(data_processed) -> dict:
  44. """计算MTTC (Modified Time To Collision)"""
  45. if data_processed is None or not hasattr(data_processed, 'object_df'):
  46. return {"MTTC": None}
  47. try:
  48. safety = SafetyCalculator(data_processed)
  49. mttc_value = safety.get_mttc_value()
  50. LogManager().get_logger().info(f"安全指标[MTTC]计算结果: {mttc_value}")
  51. return {"MTTC": mttc_value}
  52. except Exception as e:
  53. LogManager().get_logger().error(f"MTTC计算异常: {str(e)}", exc_info=True)
  54. return {"MTTC": None}
  55. def calculate_thw(data_processed) -> dict:
  56. """计算THW (Time Headway)"""
  57. if data_processed is None or not hasattr(data_processed, 'object_df'):
  58. return {"THW": None}
  59. try:
  60. safety = SafetyCalculator(data_processed)
  61. thw_value = safety.get_thw_value()
  62. LogManager().get_logger().info(f"安全指标[THW]计算结果: {thw_value}")
  63. return {"THW": thw_value}
  64. except Exception as e:
  65. LogManager().get_logger().error(f"THW计算异常: {str(e)}", exc_info=True)
  66. return {"THW": None}
  67. def calculate_tlc(data_processed) -> dict:
  68. """计算TLC (Time to Line Crossing)"""
  69. if data_processed is None or not hasattr(data_processed, 'object_df'):
  70. return {"TLC": None}
  71. try:
  72. safety = SafetyCalculator(data_processed)
  73. tlc_value = safety.get_tlc_value()
  74. LogManager().get_logger().info(f"安全指标[TLC]计算结果: {tlc_value}")
  75. return {"TLC": tlc_value}
  76. except Exception as e:
  77. LogManager().get_logger().error(f"TLC计算异常: {str(e)}", exc_info=True)
  78. return {"TLC": None}
  79. def calculate_ttb(data_processed) -> dict:
  80. """计算TTB (Time to Brake)"""
  81. if data_processed is None or not hasattr(data_processed, 'object_df'):
  82. return {"TTB": None}
  83. try:
  84. safety = SafetyCalculator(data_processed)
  85. ttb_value = safety.get_ttb_value()
  86. LogManager().get_logger().info(f"安全指标[TTB]计算结果: {ttb_value}")
  87. return {"TTB": ttb_value}
  88. except Exception as e:
  89. LogManager().get_logger().error(f"TTB计算异常: {str(e)}", exc_info=True)
  90. return {"TTB": None}
  91. def calculate_tm(data_processed) -> dict:
  92. """计算TM (Time Margin)"""
  93. if data_processed is None or not hasattr(data_processed, 'object_df'):
  94. return {"TM": None}
  95. try:
  96. safety = SafetyCalculator(data_processed)
  97. tm_value = safety.get_tm_value()
  98. LogManager().get_logger().info(f"安全指标[TM]计算结果: {tm_value}")
  99. return {"TM": tm_value}
  100. except Exception as e:
  101. LogManager().get_logger().error(f"TM计算异常: {str(e)}", exc_info=True)
  102. return {"TM": None}
  103. def calculate_collisionrisk(data_processed) -> dict:
  104. """计算碰撞风险"""
  105. safety = SafetyCalculator(data_processed)
  106. collision_risk_value = safety.get_collision_risk_value()
  107. LogManager().get_logger().info(f"安全指标[collisionRisk]计算结果: {collision_risk_value}")
  108. return {"collisionRisk": collision_risk_value}
  109. def calculate_lonsd(data_processed) -> dict:
  110. """计算纵向安全距离"""
  111. safety = SafetyCalculator(data_processed)
  112. lonsd_value = safety.get_lonsd_value()
  113. LogManager().get_logger().info(f"安全指标[LonSD]计算结果: {lonsd_value}")
  114. return {"LonSD": lonsd_value}
  115. def calculate_latsd(data_processed) -> dict:
  116. """计算横向安全距离"""
  117. safety = SafetyCalculator(data_processed)
  118. latsd_value = safety.get_latsd_value()
  119. LogManager().get_logger().info(f"安全指标[LatSD]计算结果: {latsd_value}")
  120. return {"LatSD": latsd_value}
  121. def calculate_btn(data_processed) -> dict:
  122. """计算制动威胁数"""
  123. safety = SafetyCalculator(data_processed)
  124. btn_value = safety.get_btn_value()
  125. LogManager().get_logger().info(f"安全指标[BTN]计算结果: {btn_value}")
  126. return {"BTN": btn_value}
  127. def calculate_collisionseverity(data_processed) -> dict:
  128. """计算碰撞严重性"""
  129. safety = SafetyCalculator(data_processed)
  130. collision_severity_value = safety.get_collision_severity_value()
  131. LogManager().get_logger().info(f"安全指标[collisionSeverity]计算结果: {collision_severity_value}")
  132. return {"collisionSeverity": collision_severity_value}
  133. class SafetyRegistry:
  134. """安全指标注册器"""
  135. def __init__(self, data_processed):
  136. self.logger = LogManager().get_logger()
  137. self.data = data_processed
  138. self.safety_config = data_processed.safety_config["safety"]
  139. self.metrics = self._extract_metrics(self.safety_config)
  140. self._registry = self._build_registry()
  141. def _extract_metrics(self, config_node: dict) -> list:
  142. """从配置中提取指标名称"""
  143. metrics = []
  144. def _recurse(node):
  145. if isinstance(node, dict):
  146. if 'name' in node and not any(isinstance(v, dict) for v in node.values()):
  147. metrics.append(node['name'])
  148. for v in node.values():
  149. _recurse(v)
  150. _recurse(config_node)
  151. self.logger.info(f'评比的安全指标列表:{metrics}')
  152. return metrics
  153. def _build_registry(self) -> dict:
  154. """构建指标函数注册表"""
  155. registry = {}
  156. for metric_name in self.metrics:
  157. func_name = f"calculate_{metric_name.lower()}"
  158. if func_name in globals():
  159. registry[metric_name] = globals()[func_name]
  160. else:
  161. self.logger.warning(f"未实现安全指标函数: {func_name}")
  162. return registry
  163. def batch_execute(self) -> dict:
  164. """批量执行指标计算"""
  165. results = {}
  166. for name, func in self._registry.items():
  167. try:
  168. result = func(self.data)
  169. results.update(result)
  170. except Exception as e:
  171. self.logger.error(f"{name} 执行失败: {str(e)}", exc_info=True)
  172. results[name] = None
  173. self.logger.info(f'安全指标计算结果:{results}')
  174. return results
  175. class SafeManager:
  176. """安全指标管理类"""
  177. def __init__(self, data_processed):
  178. self.data = data_processed
  179. self.registry = SafetyRegistry(self.data)
  180. def report_statistic(self):
  181. """计算并报告安全指标结果"""
  182. safety_result = self.registry.batch_execute()
  183. return safety_result
  184. class SafetyCalculator:
  185. """安全指标计算类 - 兼容Safe类风格"""
  186. def __init__(self, data_processed):
  187. self.logger = LogManager().get_logger()
  188. self.data_processed = data_processed
  189. self.df = data_processed.object_df.copy()
  190. self.ego_df = data_processed.ego_data.copy() # 使用copy()避免修改原始数据
  191. self.obj_id_list = data_processed.obj_id_list
  192. self.metric_list = [
  193. 'TTC', 'MTTC', 'THW', 'LonSD', 'LatSD', 'BTN', 'collisionRisk', 'collisionSeverity'
  194. ]
  195. # 初始化默认值
  196. self.calculated_value = {
  197. "TTC": 10.0,
  198. "MTTC": 10.0,
  199. "THW": 10.0,
  200. "TLC": 10.0,
  201. "TTB": 10.0,
  202. "TM": 10.0,
  203. "LatSD": 3.0,
  204. "BTN": 1.0,
  205. "collisionRisk": 0.0,
  206. "collisionSeverity": 0.0,
  207. }
  208. self.time_list = self.ego_df['simTime'].values.tolist()
  209. self.frame_list = self.ego_df['simFrame'].values.tolist()
  210. self.collisionRisk = 0
  211. self.empty_flag = True
  212. self.logger.info("SafetyCalculator初始化完成,场景中包含自车的目标物一共为: %d", len(self.obj_id_list))
  213. if len(self.obj_id_list) > 1:
  214. self.unsafe_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  215. self.unsafe_time_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  216. self.unsafe_dist_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  217. self.unsafe_acce_drac_df = pd.DataFrame(
  218. columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  219. self.unsafe_acce_xtn_df = pd.DataFrame(
  220. columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  221. self.unsafe_prob_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
  222. self.most_dangerous = {}
  223. self.pass_percent = {}
  224. self.logger.info("开始执行安全参数计算 _safe_param_cal_new")
  225. self._safe_param_cal_new()
  226. self.logger.info("安全参数计算完成")
  227. def _safe_param_cal_new(self):
  228. self.logger.debug("进入 _safe_param_cal_new 方法")
  229. # 直接复用Safe类的实现
  230. Tc = 0.3 # 安全距离
  231. rho = self.data_processed.vehicle_config["RHO"]
  232. ego_accel_max = self.data_processed.vehicle_config["EGO_ACCEL_MAX"]
  233. obj_decel_max = self.data_processed.vehicle_config["OBJ_DECEL_MAX"]
  234. ego_decel_min = self.data_processed.vehicle_config["EGO_DECEL_MIN"]
  235. ego_decel_lon_max = self.data_processed.vehicle_config["EGO_DECEL_LON_MAX"]
  236. ego_decel_lat_max = self.data_processed.vehicle_config["EGO_DECEL_LAT_MAX"]
  237. ego_decel_max = np.sqrt(ego_decel_lon_max ** 2 + ego_decel_lat_max ** 2)
  238. x_relative_start_dist = self.ego_df["x_relative_start_dist"]
  239. obj_dict = defaultdict(dict)
  240. obj_data_dict = self.df.to_dict('records')
  241. for item in obj_data_dict:
  242. obj_dict[item['simFrame']][item['playerId']] = item
  243. df_list = []
  244. EGO_PLAYER_ID = 1
  245. for frame_num in self.frame_list:
  246. ego_data = obj_dict[frame_num][EGO_PLAYER_ID]
  247. v1 = ego_data['v']
  248. x1 = ego_data['posX']
  249. y1 = ego_data['posY']
  250. h1 = ego_data['posH']
  251. laneOffset = ego_data["laneOffset"]
  252. v_x1 = ego_data['speedX']
  253. v_y1 = ego_data['speedY']
  254. a_x1 = ego_data['accelX']
  255. a_y1 = ego_data['accelY']
  256. a1 = np.sqrt(a_x1 ** 2 + a_y1 ** 2)
  257. for playerId in self.obj_id_list:
  258. if playerId == EGO_PLAYER_ID:
  259. continue
  260. try:
  261. obj_data = obj_dict[frame_num][playerId]
  262. except KeyError:
  263. continue
  264. x2 = obj_data['posX']
  265. y2 = obj_data['posY']
  266. dist = self.dist(x1, y1, x2, y2)
  267. obj_data['dist'] = dist
  268. v_x2 = obj_data['speedX']
  269. v_y2 = obj_data['speedY']
  270. v2 = obj_data['v']
  271. a_x2 = obj_data['accelX']
  272. a_y2 = obj_data['accelY']
  273. a2 = np.sqrt(a_x2 ** 2 + a_y2 ** 2)
  274. dx, dy = x2 - x1, y2 - y1
  275. # 计算目标车相对于自车的方位角
  276. beta = math.atan2(dy, dx)
  277. # 将全局坐标系下的相对位置向量转换到自车坐标系
  278. # 自车坐标系:车头方向为x轴正方向,车辆左侧为y轴正方向
  279. h1_rad = math.radians(90 - h1) # 转换为与x轴的夹角
  280. # 坐标变换
  281. lon_d = dx * math.cos(h1_rad) + dy * math.sin(h1_rad) # 纵向距离(前为正,后为负)
  282. lat_d = abs(-dx * math.sin(h1_rad) + dy * math.cos(h1_rad)) # 横向距离(取绝对值)
  283. obj_dict[frame_num][playerId]['lon_d'] = lon_d
  284. obj_dict[frame_num][playerId]['lat_d'] = lat_d
  285. if lon_d > 100 or lon_d < -5 or lat_d > 4:
  286. continue
  287. self.empty_flag = False
  288. vx, vy = v_x1 - v_x2, v_y1 - v_y2
  289. ax, ay = a_x2 - a_x1, a_y2 - a_y1
  290. relative_v = np.sqrt(vx ** 2 + vy ** 2)
  291. v_ego_p = self._cal_v_ego_projection(dx, dy, v_x1, v_y1)
  292. v_obj_p = self._cal_v_ego_projection(dx, dy, v_x2, v_y2)
  293. vrel_projection_in_dist = self._cal_v_projection(dx, dy, vx, vy)
  294. arel_projection_in_dist = self._cal_a_projection(dx, dy, vx, vy, ax, ay, x1, y1, x2, y2, v_x1, v_y1,
  295. v_x2, v_y2)
  296. obj_dict[frame_num][playerId]['vrel_projection_in_dist'] = vrel_projection_in_dist
  297. obj_dict[frame_num][playerId]['arel_projection_in_dist'] = arel_projection_in_dist
  298. obj_dict[frame_num][playerId]['v_ego_projection_in_dist'] = v_ego_p
  299. obj_dict[frame_num][playerId]['v_obj_projection_in_dist'] = v_obj_p
  300. obj_type = obj_data['type']
  301. TTC = self._cal_TTC(dist, vrel_projection_in_dist) if abs(vrel_projection_in_dist) > 1e-6 else None
  302. MTTC = self._cal_MTTC(dist, vrel_projection_in_dist, arel_projection_in_dist)
  303. THW = self._cal_THW(dist, v_ego_p) if abs(v_ego_p) > 1e-6 else None
  304. TLC = self._cal_TLC(v1, h1, laneOffset)
  305. TTB = self._cal_TTB(x_relative_start_dist, relative_v, ego_decel_max)
  306. TM = self._cal_TM(x_relative_start_dist, v2, a2, v1, a1)
  307. LonSD = self._cal_longitudinal_safe_dist(v_ego_p, v_obj_p, rho, ego_accel_max, ego_decel_min, obj_decel_max)
  308. lat_dist = 0.5
  309. v_right = v1
  310. v_left = v2
  311. a_right_lat_brake_min = 1
  312. a_left_lat_brake_min = 1
  313. a_lat_max = 5
  314. LatSD = self._cal_lateral_safe_dist(lat_dist, v_right, v_left, rho, a_right_lat_brake_min,
  315. a_left_lat_brake_min, a_lat_max)
  316. # 使用自车坐标系下的纵向加速度
  317. lon_a1 = a_x1 * math.cos(h1_rad) + a_y1 * math.sin(h1_rad)
  318. lon_a2 = a_x2 * math.cos(h1_rad) + a_y2 * math.sin(h1_rad)
  319. lon_a = abs(lon_a1 - lon_a2)
  320. lon_d = max(0.1, lon_d) # 确保纵向距离为正
  321. lon_v = v_x1 * math.cos(h1_rad) + v_y1 * math.sin(h1_rad)
  322. BTN = self._cal_BTN_new(lon_a1, lon_a, lon_d, lon_v, ego_decel_lon_max)
  323. # 使用自车坐标系下的横向加速度
  324. lat_a1 = -a_x1 * math.sin(h1_rad) + a_y1 * math.cos(h1_rad)
  325. lat_a2 = -a_x2 * math.sin(h1_rad) + a_y2 * math.cos(h1_rad)
  326. lat_a = abs(lat_a1 - lat_a2)
  327. lat_v = -v_x1 * math.sin(h1_rad) + v_y1 * math.cos(h1_rad)
  328. obj_dict[frame_num][playerId]['lat_v_rel'] = lat_v - (-v_x2 * math.sin(h1_rad) + v_y2 * math.cos(h1_rad))
  329. obj_dict[frame_num][playerId]['lon_v_rel'] = lon_v - (v_x2 * math.cos(h1_rad) + v_y2 * math.sin(h1_rad))
  330. TTC = None if (TTC is None or TTC < 0) else TTC
  331. MTTC = None if (MTTC is None or MTTC < 0) else MTTC
  332. THW = None if (THW is None or THW < 0) else THW
  333. TLC = None if (TLC is None or TLC < 0) else TLC
  334. TTB = None if (TTB is None or TTB < 0) else TTB
  335. TM = None if (TM is None or TM < 0) else TM
  336. obj_dict[frame_num][playerId]['TTC'] = TTC
  337. obj_dict[frame_num][playerId]['MTTC'] = MTTC
  338. obj_dict[frame_num][playerId]['THW'] = THW
  339. obj_dict[frame_num][playerId]['TLC'] = TLC
  340. obj_dict[frame_num][playerId]['TTB'] = TTB
  341. obj_dict[frame_num][playerId]['TM'] = TM
  342. obj_dict[frame_num][playerId]['LonSD'] = LonSD
  343. obj_dict[frame_num][playerId]['LatSD'] = LatSD
  344. obj_dict[frame_num][playerId]['BTN'] = abs(BTN)
  345. collisionSeverity = 0
  346. pr_death = 0
  347. collisionRisk = 0
  348. obj_dict[frame_num][playerId]['collisionSeverity'] = collisionSeverity * 100
  349. obj_dict[frame_num][playerId]['pr_death'] = pr_death * 100
  350. obj_dict[frame_num][playerId]['collisionRisk'] = collisionRisk * 100
  351. df_fnum = pd.DataFrame(obj_dict[frame_num].values())
  352. df_list.append(df_fnum)
  353. df_safe = pd.concat(df_list)
  354. col_list = ['simTime', 'simFrame', 'playerId',
  355. 'TTC', 'MTTC', 'THW', 'TLC', 'TTB', 'TM', 'LonSD', 'LatSD', 'BTN',
  356. 'collisionSeverity', 'pr_death', 'collisionRisk']
  357. self.df_safe = df_safe[col_list].reset_index(drop=True)
  358. def _cal_v_ego_projection(self, dx, dy, v_x1, v_y1):
  359. # 计算 AB 连线的向量 AB
  360. # dx = x2 - x1
  361. # dy = y2 - y1
  362. # 计算 AB 连线的模长 |AB|
  363. AB_mod = math.sqrt(dx ** 2 + dy ** 2)
  364. # 计算 AB 连线的单位向量 U_AB
  365. U_ABx = dx / AB_mod
  366. U_ABy = dy / AB_mod
  367. # 计算 A 在 AB 连线上的速度 V1_on_AB
  368. V1_on_AB = v_x1 * U_ABx + v_y1 * U_ABy
  369. return V1_on_AB
  370. def _cal_v_projection(self, dx, dy, vx, vy):
  371. # 计算 AB 连线的向量 AB
  372. # dx = x2 - x1
  373. # dy = y2 - y1
  374. # 计算 AB 连线的模长 |AB|
  375. AB_mod = math.sqrt(dx ** 2 + dy ** 2)
  376. # 计算 AB 连线的单位向量 U_AB
  377. U_ABx = dx / AB_mod
  378. U_ABy = dy / AB_mod
  379. # 计算 A 相对于 B 的速度 V_relative
  380. # vx = vx1 - vx2
  381. # vy = vy1 - vy2
  382. # 计算 A 相对于 B 在 AB 连线上的速度 V_on_AB
  383. V_on_AB = vx * U_ABx + vy * U_ABy
  384. return V_on_AB
  385. def _cal_a_projection(self, dx, dy, vx, vy, ax, ay, x1, y1, x2, y2, v_x1, v_y1, v_x2, v_y2):
  386. # 计算 AB 连线的向量 AB
  387. # dx = x2 - x1
  388. # dy = y2 - y1
  389. # 计算 θ
  390. V_mod = math.sqrt(vx ** 2 + vy ** 2)
  391. AB_mod = math.sqrt(dx ** 2 + dy ** 2)
  392. if V_mod == 0 or AB_mod == 0:
  393. return 0
  394. cos_theta = (vx * dx + vy * dy) / (V_mod * AB_mod)
  395. theta = math.acos(cos_theta)
  396. # 计算 AB 连线的模长 |AB|
  397. AB_mod = math.sqrt(dx ** 2 + dy ** 2)
  398. # 计算 AB 连线的单位向量 U_AB
  399. U_ABx = dx / AB_mod
  400. U_ABy = dy / AB_mod
  401. # 计算 A 相对于 B 的加速度 a_relative
  402. # ax = ax1 - ax2
  403. # ay = ay1 - ay2
  404. # 计算 A 相对于 B 在 AB 连线上的加速度 a_on_AB
  405. a_on_AB = ax * U_ABx + ay * U_ABy
  406. VA = np.array([v_x1, v_y1])
  407. VB = np.array([v_x2, v_y2])
  408. D_A = np.array([x1, y1])
  409. D_B = np.array([x2, y2])
  410. V_r = VA - VB
  411. V = np.linalg.norm(V_r)
  412. w = self._cal_relative_angular_v(theta, D_A, D_B, VA, VB)
  413. a_on_AB_back = self._calculate_derivative(a_on_AB, w, V, theta)
  414. return a_on_AB_back
  415. # 计算相对加速度
  416. def _calculate_derivative(self, a, w, V, theta):
  417. # 计算(V×cos(θ))'的值
  418. # derivative = a * math.cos(theta) - w * V * math.sin(theta)theta
  419. derivative = a - w * V * math.sin(theta)
  420. return derivative
  421. def _cal_relative_angular_v(self, theta, A, B, VA, VB):
  422. dx = A[0] - B[0]
  423. dy = A[1] - B[1]
  424. dvx = VA[0] - VB[0]
  425. dvy = VA[1] - VB[1]
  426. # (dx * dvy - dy * dvx)
  427. angular_velocity = math.sqrt(dvx ** 2 + dvy ** 2) * math.sin(theta) / math.sqrt(dx ** 2 + dy ** 2)
  428. return angular_velocity
  429. def _death_pr(self, obj_type, v_relative):
  430. if obj_type == 5:
  431. p_death = 1 / (1 + np.exp(7.723 - 0.15 * v_relative))
  432. else:
  433. p_death = 1 / (1 + np.exp(8.192 - 0.12 * v_relative))
  434. return p_death
  435. def _cal_collisionRisk_level(self, obj_type, v_relative, collisionSeverity):
  436. if obj_type == 5:
  437. p_death = 1 / (1 + np.exp(7.723 - 0.15 * v_relative))
  438. else:
  439. p_death = 1 / (1 + np.exp(8.192 - 0.12 * v_relative))
  440. collisionRisk = 0.4 * p_death + 0.6 * collisionSeverity
  441. return collisionRisk
  442. # 求两车之间当前距离
  443. def dist(self, x1, y1, x2, y2):
  444. dist = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  445. return dist
  446. # TTC (time to collision)
  447. def _cal_TTC(self, dist, vrel_projection_in_dist):
  448. if vrel_projection_in_dist == 0:
  449. return math.inf
  450. TTC = dist / vrel_projection_in_dist
  451. return TTC
  452. def _cal_MTTC(self, dist, vrel_projection_in_dist, arel_projection_in_dist):
  453. MTTC = math.nan
  454. if arel_projection_in_dist != 0:
  455. tmp = vrel_projection_in_dist ** 2 + 2 * arel_projection_in_dist * dist
  456. if tmp < 0:
  457. return math.nan
  458. t1 = (-1 * vrel_projection_in_dist - math.sqrt(tmp)) / arel_projection_in_dist
  459. t2 = (-1 * vrel_projection_in_dist + math.sqrt(tmp)) / arel_projection_in_dist
  460. if t1 > 0 and t2 > 0:
  461. if t1 >= t2:
  462. MTTC = t2
  463. elif t1 < t2:
  464. MTTC = t1
  465. elif t1 > 0 and t2 <= 0:
  466. MTTC = t1
  467. elif t1 <= 0 and t2 > 0:
  468. MTTC = t2
  469. if arel_projection_in_dist == 0 and vrel_projection_in_dist > 0:
  470. MTTC = dist / vrel_projection_in_dist
  471. return MTTC
  472. # THW (time headway)
  473. def _cal_THW(self, dist, v_ego_projection_in_dist):
  474. if not v_ego_projection_in_dist:
  475. THW = None
  476. else:
  477. THW = dist / v_ego_projection_in_dist
  478. return THW
  479. # TLC (time to line crossing)
  480. def _cal_TLC(self, ego_v, ego_yaw, laneOffset):
  481. TLC = laneOffset/ego_v/np.sin(ego_yaw) if ((ego_v != 0) and (np.sin(ego_yaw) != 0)) else 10.0
  482. if TLC < 0:
  483. TLC = None
  484. return TLC
  485. def _cal_TTB(self, x_relative_start_dist, relative_v, ego_decel_max):
  486. if len(x_relative_start_dist):
  487. return None
  488. if (ego_decel_max == 0) or (relative_v == 0):
  489. return self.calculated_value["TTB"]
  490. else:
  491. x_relative_start_dist0 = x_relative_start_dist.tolist()[0]
  492. TTB = (x_relative_start_dist0 + relative_v * relative_v/2/ego_decel_max)/relative_v
  493. return TTB
  494. def _cal_TM(self, x_relative_start_dist, v2, a2, v1, a1):
  495. if len(x_relative_start_dist):
  496. return None
  497. if (a2 == 0) or (v1 == 0):
  498. return self.calculated_value["TM"]
  499. if a1 == 0:
  500. return None
  501. x_relative_start_dist0 = x_relative_start_dist.tolist()[0]
  502. TM = (x_relative_start_dist0 + v2**2/(2*a2) - v1**2/(2*a1)) / v1
  503. return TM
  504. def velocity(self, v_x, v_y):
  505. v = math.sqrt(v_x ** 2 + v_y ** 2) * 3.6
  506. return v
  507. def _cal_longitudinal_safe_dist(self, v_ego_p, v_obj_p, rho, ego_accel_max, ego_decel_min, ego_decel_max):
  508. lon_dist_min = v_ego_p * rho + ego_accel_max * (rho ** 2) / 2 + (v_ego_p + rho * ego_accel_max) ** 2 / (
  509. 2 * ego_decel_min) - v_obj_p ** 2 / (2 * ego_decel_max)
  510. return lon_dist_min
  511. def _cal_lateral_safe_dist(self, lat_dist, v_right, v_left, rho, a_right_lat_brake_min,
  512. a_left_lat_brake_min, a_lat_max):
  513. # 检查除数是否为零
  514. if a_right_lat_brake_min == 0 or a_left_lat_brake_min == 0:
  515. return self._default_value('LatSD') # 返回默认值
  516. v_right_rho = v_right + rho * a_lat_max
  517. v_left_rho = v_left + rho * a_lat_max
  518. dist_min = lat_dist + (
  519. (v_right + v_right_rho) * rho / 2
  520. + v_right_rho**2 / a_right_lat_brake_min / 2
  521. + ((v_left + v_right_rho) * rho / 2)
  522. + v_left_rho**2 / a_left_lat_brake_min / 2
  523. )
  524. return dist_min
  525. # DRAC (decelerate required avoid collision)
  526. def _cal_DRAC(self, dist, vrel_projection_in_dist, len1, len2, width1, width2, o_x1, o_x2):
  527. dist_length = dist - (len2 / 2 - o_x2 + len1 / 2 + o_x1) # 4.671
  528. if dist_length < 0:
  529. dist_width = dist - (width2 / 2 + width1 / 2)
  530. if dist_width < 0:
  531. return math.inf
  532. else:
  533. d = dist_width
  534. else:
  535. d = dist_length
  536. DRAC = vrel_projection_in_dist ** 2 / (2 * d)
  537. return DRAC
  538. # BTN (brake threat number)
  539. def _cal_BTN_new(self, lon_a1, lon_a, lon_d, lon_v, ego_decel_lon_max):
  540. BTN = (lon_a1 + lon_a - lon_v ** 2 / (2 * lon_d)) / ego_decel_lon_max # max_ay为此车可实现的最大纵向加速度,目前为本次实例里的最大值
  541. return BTN
  542. # STN (steer threat number)
  543. def _cal_STN_new(self, ttc, lat_a1, lat_a, lat_d, lat_v, ego_decel_lat_max, width1, width2):
  544. STN = (lat_a1 + lat_a + 2 / ttc ** 2 * (lat_d + abs(ego_decel_lat_max * lat_v) * (
  545. width1 + width2) / 2 + abs(lat_v * ttc))) / ego_decel_lat_max
  546. return STN
  547. # BTN (brake threat number)
  548. def cal_BTN(self, a_y1, ay, dy, vy, max_ay):
  549. BTN = (a_y1 + ay - vy ** 2 / (2 * dy)) / max_ay # max_ay为此车可实现的最大纵向加速度,目前为本次实例里的最大值
  550. return BTN
  551. # STN (steer threat number)
  552. def cal_STN(self, ttc, a_x1, ax, dx, vx, max_ax, width1, width2):
  553. STN = (a_x1 + ax + 2 / ttc ** 2 * (dx + np.sign(max_ax * vx) * (width1 + width2) / 2 + vx * ttc)) / max_ax
  554. return STN
  555. # 追尾碰撞风险
  556. def _normal_distribution(self, x):
  557. mean = 1.32
  558. std_dev = 0.26
  559. return (1 / (math.sqrt(std_dev * 2 * math.pi))) * math.exp(-0.5 * (x - mean) ** 2 / std_dev)
  560. def continuous_group(self, df):
  561. time_list = df['simTime'].values.tolist()
  562. frame_list = df['simFrame'].values.tolist()
  563. group_time = []
  564. group_frame = []
  565. sub_group_time = []
  566. sub_group_frame = []
  567. for i in range(len(frame_list)):
  568. if not sub_group_time or frame_list[i] - frame_list[i - 1] <= 1:
  569. sub_group_time.append(time_list[i])
  570. sub_group_frame.append(frame_list[i])
  571. else:
  572. group_time.append(sub_group_time)
  573. group_frame.append(sub_group_frame)
  574. sub_group_time = [time_list[i]]
  575. sub_group_frame = [frame_list[i]]
  576. group_time.append(sub_group_time)
  577. group_frame.append(sub_group_frame)
  578. group_time = [g for g in group_time if len(g) >= 2]
  579. group_frame = [g for g in group_frame if len(g) >= 2]
  580. # 输出图表值
  581. time = [[g[0], g[-1]] for g in group_time]
  582. frame = [[g[0], g[-1]] for g in group_frame]
  583. unfunc_time_df = pd.DataFrame(time, columns=['start_time', 'end_time'])
  584. unfunc_frame_df = pd.DataFrame(frame, columns=['start_frame', 'end_frame'])
  585. unfunc_df = pd.concat([unfunc_time_df, unfunc_frame_df], axis=1)
  586. return unfunc_df
  587. # 统计最危险的指标
  588. def _safe_statistic_most_dangerous(self):
  589. min_list = ['TTC', 'MTTC', 'THW', 'TLC', 'TTB', 'LonSD', 'LatSD', 'TM']
  590. max_list = ['BTN', 'collisionRisk', 'collisionSeverity']
  591. result = {}
  592. for metric in min_list:
  593. if metric in self.metric_list:
  594. if metric in self.df.columns:
  595. val = self.df[metric].min()
  596. result[metric] = float(val) if pd.notnull(val) else self._default_value(metric)
  597. else:
  598. result[metric] = self._default_value(metric)
  599. for metric in max_list:
  600. if metric in self.metric_list:
  601. if metric in self.df.columns:
  602. val = self.df[metric].max()
  603. result[metric] = float(val) if pd.notnull(val) else self._default_value(metric)
  604. else:
  605. result[metric] = self._default_value(metric)
  606. return result
  607. def _safe_no_obj_statistic(self):
  608. # 仅有自车时的默认值
  609. result = {metric: self._default_value(metric) for metric in self.metric_list}
  610. return result
  611. def _default_value(self, metric):
  612. # 统一默认值
  613. defaults = {
  614. 'TTC': 10.0,
  615. 'MTTC': 4.2,
  616. 'THW': 2.1,
  617. 'TLC': 10.0,
  618. 'TTB': 10.0,
  619. 'TM': 10.0,
  620. 'LonSD': 10.0,
  621. 'LatSD': 2.0,
  622. 'BTN': 1.0,
  623. 'collisionRisk': 0.0,
  624. 'collisionSeverity': 0.0
  625. }
  626. return defaults.get(metric, None)
  627. def report_statistic(self):
  628. if len(self.obj_id_list) == 1:
  629. safety_result = self._safe_no_obj_statistic()
  630. else:
  631. safety_result = self._safe_statistic_most_dangerous()
  632. evaluator = Score(self.data_processed.safety_config)
  633. result = evaluator.evaluate(safety_result)
  634. print("\n[安全性表现及得分情况]")
  635. return result
  636. def get_ttc_value(self) -> float:
  637. if self.empty_flag or self.df_safe is None:
  638. return self._default_value('TTC')
  639. ttc_values = self.df_safe['TTC'].dropna()
  640. return float(ttc_values.min()) if not ttc_values.empty else self._default_value('TTC')
  641. def get_mttc_value(self) -> float:
  642. if self.empty_flag or self.df_safe is None:
  643. return self._default_value('MTTC')
  644. mttc_values = self.df_safe['MTTC'].dropna()
  645. return float(mttc_values.min()) if not mttc_values.empty else self._default_value('MTTC')
  646. def get_thw_value(self) -> float:
  647. if self.empty_flag or self.df_safe is None:
  648. return self._default_value('THW')
  649. thw_values = self.df_safe['THW'].dropna()
  650. return float(thw_values.min()) if not thw_values.empty else self._default_value('THW')
  651. def get_tlc_value(self) -> float:
  652. if self.empty_flag or self.df_safe is None:
  653. return self._default_value('TLC')
  654. tlc_values = self.df_safe['TLC'].dropna()
  655. return float(tlc_values.min()) if not tlc_values.empty else self._default_value('TLC')
  656. def get_ttb_value(self) -> float:
  657. if self.empty_flag or self.df_safe is None:
  658. return self._default_value('TTB')
  659. ttb_values = self.df_safe['TTB'].dropna()
  660. return float(ttb_values.min()) if not ttb_values.empty else self._default_value('TTB')
  661. def get_tm_value(self) -> float:
  662. if self.empty_flag or self.df_safe is None:
  663. return self._default_value('TM')
  664. tm_values = self.df_safe['TM'].dropna()
  665. return float(tm_values.min()) if not tm_values.empty else self._default_value('TM')
  666. def get_lonsd_value(self) -> float:
  667. if self.empty_flag or self.df_safe is None:
  668. return self._default_value('LonSD')
  669. lonsd_values = self.df_safe['LonSD'].dropna()
  670. return float(lonsd_values.mean()) if not lonsd_values.empty else self._default_value('LonSD')
  671. def get_latsd_value(self) -> float:
  672. if self.empty_flag or self.df_safe is None:
  673. return self._default_value('LatSD')
  674. latsd_values = self.df_safe['LatSD'].dropna()
  675. # 使用最小值而非平均值,与safety1.py保持一致
  676. return float(latsd_values.min()) if not latsd_values.empty else self._default_value('LatSD')
  677. def get_btn_value(self) -> float:
  678. if self.empty_flag or self.df_safe is None:
  679. return self._default_value('BTN')
  680. btn_values = self.df_safe['BTN'].dropna()
  681. return float(btn_values.max()) if not btn_values.empty else self._default_value('BTN')
  682. def get_collision_risk_value(self) -> float:
  683. if self.empty_flag or self.df_safe is None:
  684. return self._default_value('collisionRisk')
  685. risk_values = self.df_safe['collisionRisk'].dropna()
  686. return float(risk_values.max()) if not risk_values.empty else self._default_value('collisionRisk')
  687. def get_collision_severity_value(self) -> float:
  688. if self.empty_flag or self.df_safe is None:
  689. return self._default_value('collisionSeverity')
  690. severity_values = self.df_safe['collisionSeverity'].dropna()
  691. return float(severity_values.max()) if not severity_values.empty else self._default_value('collisionSeverity')