12345678910111213141516171819202122232425262728293031323334353637 |
- # from pyproj import Transformer
- # # 定义坐标系转换(WGS84 → UTM Zone 51N)
- # transformer = Transformer.from_crs("EPSG:4326", "EPSG:32651")
- # # 输入经纬度(注意:经度在前,纬度在后)
- # lon, lat = 123.456, 34.567 # 示例坐标(需替换为实际值)
- # # 执行转换
- # easting, northing = transformer.transform(lat, lon) # 注意:pyproj v3+要求纬度在前
- # print(f"UTM 51N坐标: {easting:.3f}, {northing:.3f}")
- import pandas as pd
- from pyproj import Transformer
- # 读取CSV文件(注意:simTime是字符串类型,避免精度丢失)
- df = pd.read_csv(
- "/home/kevin/kevin/zhaoyuan/sqlite3_demo/processed_results/V2I-DLSG-1_2025-02-26_16-41-09/ObjState.csv",
- dtype={'simTime': float} # 以字符串形式读取,保留完整精度
- )
- # 打印每一行的simTime值
- print("===== 开始打印 simTime =====")
- for index, row in df.iterrows():
- print(f"第 {index + 1} 行: simTime = {row['simTime']}")
- print("===== 结束打印 simTime =====")
- # 创建坐标转换器:WGS84经纬度 → UTM51N(EPSG:32651)
- transformer = Transformer.from_crs("EPSG:4326", "EPSG:32651")
- # 批量转换经纬度(注意参数顺序为lon, lat)
- # df["posX"], df["posY"] = transformer.transform(df["lon"].values, df["lat"].values)
- df["posX"], df["posY"] = transformer.transform(df["lat"].values, df["lon"].values)
- # 保存结果到新CSV文件
- df.to_csv("ObjState.csv", index=False)
|