123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- import math
- import pandas as pd
- import numpy as np
- import scipy.signal
- from modules.lib.score import Score
- from modules.lib.common import get_interpolation, get_frame_with_time
- from modules.config import config
- from modules.lib.log_manager import LogManager
- def peak_valley_decorator(method):
- def wrapper(self, *args, **kwargs):
- peak_valley = self._peak_valley_determination(self.df)
- pv_list = self.df.loc[peak_valley, ['simTime', 'speedH']].values.tolist()
- if len(pv_list) != 0:
- flag = True
- p_last = pv_list[0]
- for i in range(1, len(pv_list)):
- p_curr = pv_list[i]
- if self._peak_valley_judgment(p_last, p_curr):
- method(self, p_curr, p_last, flag, *args, **kwargs)
- else:
- p_last = p_curr
- return method
- else:
- flag = False
- p_curr = [0, 0]
- p_last = [0, 0]
- method(self, p_curr, p_last, flag, *args, **kwargs)
- return method
- return wrapper
- class Comfort(object):
- """
- Class for achieving comfort metrics for autonomous driving.
- Attributes:
- dataframe: Vehicle driving data, stored in dataframe format.
- """
- def __init__(self, data_processed):
- self.data_processed = data_processed
- self.logger = LogManager().get_logger()
- self.data = data_processed.ego_data.copy()
- self.ego_df = pd.DataFrame()
- self.discomfort_df = pd.DataFrame(columns=['start_time', 'end_time', 'start_frame', 'end_frame', 'type'])
- self.calculated_value = {
- 'weaving': 0,
- 'shake': 0,
- 'cadence': 0,
- 'slamBrake': 0,
- 'slamAccelerate': 0,
- }
- self.time_list = self.data['simTime'].values.tolist()
- self.frame_list = self.data['simFrame'].values.tolist()
- # 移除未使用的字典
- self.zigzag_count = 0
- self.shake_count = 0
- self.cadence_count = 0
- self.slam_brake_count = 0
- self.slam_accel_count = 0
- self.zigzag_time_list = []
- self.zigzag_stre_list = []
- self.cur_ego_path_list = []
- self.curvature_list = []
- self._get_data()
- self._comf_param_cal()
- def _get_data(self):
- """获取舒适性评估所需数据"""
- self.ego_df = self.data[config.COMFORT_INFO].copy()
- self.df = self.ego_df.reset_index(drop=True)
- def _cal_cur_ego_path(self, row):
- """计算车辆轨迹曲率"""
- try:
- # 计算速度平方和,判断是否接近零
- speed_sq = row['speedX']**2 + row['speedY']**2
- if speed_sq < 1e-6: # 阈值根据实际场景调整
- return 1e5 # 速度接近零时返回极大曲率
- divide = speed_sq ** (3/2)
- res = (row['speedX'] * row['accelY'] - row['speedY'] * row['accelX']) / divide
- return res
- except Exception:
- return 1e5 # 异常时也返回极大值(如除零、缺失值等)
- def _comf_param_cal(self):
- """计算舒适性相关参数"""
- # 加减速阈值计算
- self.ego_df['ip_acc'] = self.ego_df['v'].apply(get_interpolation, point1=[18, 4], point2=[72, 2])
- self.ego_df['ip_dec'] = self.ego_df['v'].apply(get_interpolation, point1=[18, -5], point2=[72, -3.5])
- self.ego_df['slam_brake'] = (self.ego_df['lon_acc'] - self.ego_df['ip_dec']).apply(
- lambda x: 1 if x < 0 else 0)
- self.ego_df['slam_accel'] = (self.ego_df['lon_acc'] - self.ego_df['ip_acc']).apply(
- lambda x: 1 if x > 0 else 0)
- self.ego_df['cadence'] = self.ego_df.apply(
- lambda row: self._cadence_process_new(row['lon_acc'], row['ip_acc'], row['ip_dec']), axis=1)
- # 晃动检测相关参数
- self.ego_df['cur_ego_path'] = self.ego_df.apply(self._cal_cur_ego_path, axis=1)
- self.ego_df['curvHor'] = self.ego_df['curvHor'].astype('float')
- self.ego_df['cur_diff'] = (self.ego_df['cur_ego_path'] - self.ego_df['curvHor']).abs()
- self.ego_df['R'] = self.ego_df['curvHor'].apply(lambda x: 10000 if x == 0 else 1 / x)
- self.ego_df['R_ego'] = self.ego_df['cur_ego_path'].apply(lambda x: 10000 if x == 0 else 1 / x)
- self.ego_df['R_diff'] = (self.ego_df['R_ego'] - self.ego_df['R']).abs()
- self.cur_ego_path_list = self.ego_df['cur_ego_path'].values.tolist()
- self.curvature_list = self.ego_df['curvHor'].values.tolist()
- def _peak_valley_determination(self, df):
- """
- 确定车辆角速度的峰值和谷值
- """
- # 调整参数以减少噪音干扰
- peaks, _ = scipy.signal.find_peaks(df['speedH'], height=0.03, distance=3, prominence=0.03, width=1)
- valleys, _ = scipy.signal.find_peaks(-df['speedH'], height=0.03, distance=3, prominence=0.03, width=1)
- peak_valley = sorted(list(peaks) + list(valleys))
- return peak_valley
- def _peak_valley_judgment(self, p_last, p_curr, tw=100, avg=0.06):
- """
- 判断给定的峰值和谷值是否满足特定条件
- """
- t_diff = p_curr[0] - p_last[0]
- v_diff = abs(p_curr[1] - p_last[1])
- s = p_curr[1] * p_last[1]
- zigzag_flag = t_diff < tw and v_diff > avg and s < 0
- if zigzag_flag and ([p_last[0], p_curr[0]] not in self.zigzag_time_list):
- self.zigzag_time_list.append([p_last[0], p_curr[0]])
- return zigzag_flag
- @peak_valley_decorator
- def zigzag_count_func(self, p_curr, p_last, flag=True):
- """计算曲折行驶次数"""
- if flag:
- self.zigzag_count += 1
- @peak_valley_decorator
- def cal_zigzag_strength_strength(self, p_curr, p_last, flag=True):
- """计算曲折行驶强度"""
- if flag:
- v_diff = abs(p_curr[1] - p_last[1])
- t_diff = p_curr[0] - p_last[0]
- if t_diff > 0:
- self.zigzag_stre_list.append(v_diff / t_diff) # 平均角加速度
- else:
- self.zigzag_stre_list = []
- def _shake_detector(self, Cr_diff=0.05, T_diff=0.39):
- """检测晃动事件"""
- time_list = []
- frame_list = []
- df = self.ego_df.copy()
- df = df[df['cur_diff'] > Cr_diff]
- df['frame_ID_diff'] = df['simFrame'].diff() # 找出行车轨迹曲率与道路曲率之差大于阈值的数据段
- filtered_df = df[df.frame_ID_diff > T_diff] # 此处是用大间隔区分多次晃动情景
- row_numbers = filtered_df.index.tolist()
- cut_column = pd.cut(df.index, bins=row_numbers)
- grouped = df.groupby(cut_column)
- dfs = {}
- for name, group in grouped:
- dfs[name] = group.reset_index(drop=True)
- for name, df_group in dfs.items():
- # 直道,未主动换道
- df_group['curvHor'] = df_group['curvHor'].abs()
- df_group_straight = df_group[(df_group.lightMask == 0) & (df_group.curvHor < 0.001)]
- if not df_group_straight.empty:
- time_list.extend(df_group_straight['simTime'].values)
- frame_list.extend(df_group_straight['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 打转向灯,道路为直道,此时晃动判断标准车辆曲率变化率为一个更大的阈值
- df_group_change_lane = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'] < 0.001)]
- df_group_change_lane_data = df_group_change_lane[df_group_change_lane.cur_diff > Cr_diff + 0.2]
- if not df_group_change_lane_data.empty:
- time_list.extend(df_group_change_lane_data['simTime'].values)
- frame_list.extend(df_group_change_lane_data['simFrame'].values)
- self.shake_count = self.shake_count + 1
- # 转弯,打转向灯
- df_group_turn = df_group[(df_group['lightMask'] != 0) & (df_group['curvHor'].abs() > 0.001)]
- df_group_turn_data = df_group_turn[df_group_turn.cur_diff.abs() > Cr_diff + 0.1]
- if not df_group_turn_data.empty:
- time_list.extend(df_group_turn_data['simTime'].values)
- frame_list.extend(df_group_turn_data['simFrame'].values)
- self.shake_count = self.shake_count + 1
- TIME_RANGE = 1
- t_list = time_list
- f_list = frame_list
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= TIME_RANGE:
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- # 输出图表值
- shake_time = [[g[0], g[-1]] for g in group_time]
- shake_frame = [[g[0], g[-1]] for g in group_frame]
- self.shake_count = len(shake_time)
- if shake_time:
- # 保存晃动事件摘要
- time_df = pd.DataFrame(shake_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(shake_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'shake'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- return time_list
- def _cadence_process_new(self, lon_acc, ip_acc, ip_dec):
- """处理顿挫数据"""
- if abs(lon_acc) < 1 or lon_acc > ip_acc or lon_acc < ip_dec:
- return np.nan
- elif abs(lon_acc) == 0:
- return 0
- elif lon_acc > 0 and lon_acc < ip_acc:
- return 1
- elif lon_acc < 0 and lon_acc > ip_dec:
- return -1
- else:
- return 0
- def _cadence_detector(self):
- """检测顿挫事件"""
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'cadence', 'v']].copy()
- time_list = data['simTime'].values.tolist()
- data = data[data['cadence'] != np.nan]
- data['cadence_diff'] = data['cadence'].diff()
- data.dropna(subset='cadence_diff', inplace=True)
- data = data[data['cadence_diff'] != 0]
- t_list = data['simTime'].values.tolist()
- f_list = data['simFrame'].values.tolist()
- TIME_RANGE = 1
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or t_list[i] - t_list[i - 1] <= TIME_RANGE: # 特征点相邻一秒内的,算作同一组顿挫
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 1] # 有一次特征点则算作一次顿挫
- group_frame = [g for g in group_frame if len(g) >= 1]
- # 输出图表值
- cadence_time = [[g[0], g[-1]] for g in group_time]
- cadence_frame = [[g[0], g[-1]] for g in group_frame]
- if cadence_time:
- # 保存顿挫事件摘要
- time_df = pd.DataFrame(cadence_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(cadence_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'cadence'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- # 将顿挫组的起始时间为组重新统计时间
- cadence_time_list = [time for pair in cadence_time for time in self.ego_df['simTime'].values if pair[0] <= time <= pair[1]]
- self.cadence_count = len(cadence_time)
- return cadence_time_list
- def _slam_brake_detector(self):
- """检测急刹车事件"""
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'lon_acc_roc', 'ip_dec', 'slam_brake', 'v']].copy()
-
- res_df = data[data['slam_brake'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- TIME_RANGE = 1
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not sub_group_time or f_list[i] - f_list[i - 1] <= TIME_RANGE: # 连续帧的算作同一组急刹
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2] # 达到两帧算作一次急刹
- group_frame = [g for g in group_frame if len(g) >= 2]
- # 输出图表值
- slam_brake_time = [[g[0], g[-1]] for g in group_time]
- slam_brake_frame = [[g[0], g[-1]] for g in group_frame]
- if slam_brake_time:
- # 保存事件摘要
- time_df = pd.DataFrame(slam_brake_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(slam_brake_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'slam_brake'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_brake_count = len(group_time)
- return time_list
- def _slam_accel_detector(self):
- """检测急加速事件"""
- data = self.ego_df[['simTime', 'simFrame', 'lon_acc', 'ip_acc', 'slam_accel', 'v']].copy()
-
- res_df = data.loc[data['slam_accel'] == 1]
- t_list = res_df['simTime'].values
- f_list = res_df['simFrame'].values.tolist()
- group_time = []
- group_frame = []
- sub_group_time = []
- sub_group_frame = []
- for i in range(len(f_list)):
- if not group_time or f_list[i] - f_list[i - 1] <= 1: # 连续帧的算作同一组急加速
- sub_group_time.append(t_list[i])
- sub_group_frame.append(f_list[i])
- else:
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- sub_group_time = [t_list[i]]
- sub_group_frame = [f_list[i]]
- group_time.append(sub_group_time)
- group_frame.append(sub_group_frame)
- group_time = [g for g in group_time if len(g) >= 2]
- group_frame = [g for g in group_frame if len(g) >= 2]
- # 输出图表值
- slam_accel_time = [[g[0], g[-1]] for g in group_time]
- slam_accel_frame = [[g[0], g[-1]] for g in group_frame]
- if slam_accel_time:
- # 保存事件摘要
- time_df = pd.DataFrame(slam_accel_time, columns=['start_time', 'end_time'])
- frame_df = pd.DataFrame(slam_accel_frame, columns=['start_frame', 'end_frame'])
- discomfort_df = pd.concat([time_df, frame_df], axis=1)
- discomfort_df['type'] = 'slam_accel'
- self.discomfort_df = pd.concat([self.discomfort_df, discomfort_df], ignore_index=True)
- time_list = [element for sublist in group_time for element in sublist]
- self.slam_accel_count = len(group_time)
- return time_list
-
- def comf_statistic(self):
- """统计舒适性指标"""
- df = self.ego_df[['simTime', 'simFrame', 'cur_diff', 'lon_acc', 'lon_acc_roc', 'accelH', 'speedH', 'lat_acc', 'v']].copy()
- self.zigzag_count_func()
- self.cal_zigzag_strength_strength()
- if self.zigzag_time_list:
- # 保存 Weaving (zigzag) 事件摘要
- zigzag_df = pd.DataFrame(self.zigzag_time_list, columns=['start_time', 'end_time'])
- zigzag_df = get_frame_with_time(zigzag_df, self.ego_df)
- zigzag_df['type'] = 'zigzag'
- self.discomfort_df = pd.concat([self.discomfort_df, zigzag_df], ignore_index=True)
- zigzag_t_list = []
- # 只有[t_start, t_end]数对,要提取为完整time list
- t_list = df['simTime'].values.tolist()
- for t_start, t_end in self.zigzag_time_list:
- index_1 = t_list.index(t_start)
- index_2 = t_list.index(t_end)
- zigzag_t_list.extend(t_list[index_1:index_2 + 1])
- zigzag_t_list = list(set(zigzag_t_list))
- shake_t_list = self._shake_detector()
- cadence_t_list = self._cadence_detector()
- slam_brake_t_list = self._slam_brake_detector()
- slam_accel_t_list = self._slam_accel_detector()
- # 统计结果
- self.calculated_value = {
- "weaving": self.zigzag_count,
- "shake": self.shake_count,
- "cadence": self.cadence_count,
- "slamBrake": self.slam_brake_count,
- "slamAccelerate": self.slam_accel_count
- }
- self.logger.info(f"舒适性计算完成,统计结果:{self.calculated_value}")
- return self.calculated_value
- def report_statistic(self):
- """生成舒适性评估报告"""
- comfort_result = self.comf_statistic()
- evaluator = Score(self.data_processed.comfort_config)
- result = evaluator.evaluate(comfort_result)
- print("\n[舒适性表现及得分情况]")
- return result
|