123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- ##################################################################
- #
- # Copyright (c) 2023 CICV, Inc. All Rights Reserved
- #
- ##################################################################
- """
- @Authors: xieguijin(xieguijin@china-icv.cn)
- @Data: 2023/07/23
- @Last Modified: 2023/07/23
- @Summary: Efficient metrics calculation
- """
- from modules.lib.score import Score
- from modules.lib.log_manager import LogManager
- class Efficient:
- """高效性指标计算类"""
-
- def __init__(self, data_processed):
- """初始化高效性指标计算类
-
- Args:
- data_processed: 预处理后的数据对象
- """
- self.logger = LogManager().get_logger()
- self.data_processed = data_processed
- self.df = data_processed.object_df.copy()
- self.ego_df = data_processed.ego_data.copy()
-
- # 配置参数
- self.STOP_SPEED_THRESHOLD = 0.05 # 停车速度阈值 (m/s)
- self.STOP_TIME_THRESHOLD = 0.5 # 停车时间阈值 (秒)
- self.FRAME_RANGE = 13 # 停车帧数阈值
-
- # 初始化结果变量
- self.stop_count = 0 # 停车次数
- self.stop_duration = 0 # 平均停车时长
- self.average_v = 0 # 平均速度
-
- def _max_speed(self):
- """计算最大速度
-
- Returns:
- float: 最大速度 (m/s)
- """
- return self.ego_df['v'].max()
- def _deviation_speed(self):
- """计算速度方差
-
- Returns:
- float: 速度方差
- """
- return self.ego_df['v'].var()
- def average_velocity(self):
- """计算平均速度
-
- Returns:
- float: 平均速度 (m/s)
- """
- self.average_v = self.ego_df['v'].mean()
- return self.average_v
- def stop_duration_and_count(self):
- """计算停车次数和平均停车时长
-
- Returns:
- float: 平均停车时长 (秒)
- """
- # 获取速度低于阈值的时间和帧号
- stop_mask = self.ego_df['v'] <= self.STOP_SPEED_THRESHOLD
- if not any(stop_mask):
- return 0 # 如果没有停车,直接返回0
-
- stop_time_list = self.ego_df.loc[stop_mask, 'simTime'].values.tolist()
- stop_frame_list = self.ego_df.loc[stop_mask, 'simFrame'].values.tolist()
-
- if not stop_frame_list:
- return 0 # 防止空列表导致的索引错误
-
- stop_frame_group = []
- stop_time_group = []
- sum_stop_time = 0
- f1, t1 = stop_frame_list[0], stop_time_list[0]
-
- # 检测停车段
- for i in range(1, len(stop_frame_list)):
- if stop_frame_list[i] - stop_frame_list[i - 1] != 1: # 帧不连续
- f2, t2 = stop_frame_list[i - 1], stop_time_list[i - 1]
- # 如果停车有效(帧数差 >= FRAME_RANGE)
- if f2 - f1 >= self.FRAME_RANGE:
- stop_frame_group.append((f1, f2))
- stop_time_group.append((t1, t2))
- sum_stop_time += (t2 - t1)
- self.stop_count += 1
- # 更新起始点
- f1, t1 = stop_frame_list[i], stop_time_list[i]
-
- # 检查最后一段停车
- if len(stop_frame_list) > 0:
- f2, t2 = stop_frame_list[-1], stop_time_list[-1]
- last_frame = self.ego_df['simFrame'].values[-1]
- # 确保不是因为数据结束导致的停车
- if f2 - f1 >= self.FRAME_RANGE and f2 != last_frame:
- stop_frame_group.append((f1, f2))
- stop_time_group.append((t1, t2))
- sum_stop_time += (t2 - t1)
- self.stop_count += 1
-
- # 计算平均停车时长
- self.stop_duration = sum_stop_time / self.stop_count if self.stop_count > 0 else 0
-
- self.logger.info(f"检测到停车次数: {self.stop_count}, 平均停车时长: {self.stop_duration:.2f}秒")
- return self.stop_duration
- def report_statistic(self):
- """生成统计报告
-
- Returns:
- dict: 高效性评估结果
- """
- # 计算各项指标
- max_speed_ms = self._max_speed()
- deviation_speed_ms = self._deviation_speed()
- average_speed_ms = self.average_velocity()
-
- # 将 m/s 转换为 km/h 用于评分
- max_speed_kmh = max_speed_ms * 3.6
- deviation_speed_kmh = deviation_speed_ms * 3.6
- average_speed_kmh = average_speed_ms * 3.6
-
- efficient_result = {
- 'maxSpeed': max_speed_kmh, # 转换为 km/h
- 'deviationSpeed': deviation_speed_kmh, # 转换为 km/h
- 'averagedSpeed': average_speed_kmh, # 转换为 km/h
- 'stopDuration': self.stop_duration_and_count()
- }
-
- self.logger.info(f"高效性指标计算完成,结果: {efficient_result}")
-
- # 评分
- evaluator = Score(self.data_processed.efficient_config)
- result = evaluator.evaluate(efficient_result)
-
- print("\n[高效性表现及评价结果]")
- return result
|