123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221 |
- import math
- import numpy as np
- import pandas as pd
- from modules.lib import log_manager
- from modules.lib.score import Score
- from modules.config import config
- class OvertakingViolation(object):
- """超车违规类"""
- def __init__(self, df_data):
- print("超车违规类初始化中...")
- self.traffic_violations_type = "超车违规类"
- # self.logger = log.get_logger() # 使用时再初始化
- self.data = df_data.ego_data
- self.ego_data = (
- self.data[config.OVERTAKE_INFO].copy().reset_index(drop=True)
- ) # Copy to avoid modifying the original DataFrame
- header = self.ego_data.columns
- if 2 in df_data.obj_id_list:
- self.data_obj = df_data.obj_data[2]
- self.obj_data = (
- self.data_obj[config.OVERTAKE_INFO].copy().reset_index(drop=True)
- ) # Copy to avoid modifying the original DataFrame
- else:
- self.obj_data = pd.DataFrame(columns=header)
- if 3 in df_data.obj_id_list:
- self.other_obj_data1 = df_data.obj_data[3]
- self.other_obj_data = (
- self.other_obj_data1[config.OVERTAKE_INFO].copy().reset_index(drop=True)
- )
- else:
- self.other_obj_data = pd.DataFrame(columns=header)
- self.overtake_on_right_count = 0
- self.overtake_when_turn_around_count = 0
- self.overtake_when_passing_car_count = 0
- self.overtake_in_forbid_lane_count = 0
- self.overtake_in_ramp_count = 0
- self.overtake_in_tunnel_count = 0
- self.overtake_on_accelerate_lane_count = 0
- self.overtake_on_decelerate_lane_count = 0
- self.overtake_in_different_senerios_count = 0
- def different_road_area_simtime(self, df, threshold=0.5):
- if not df:
- return []
- simtime_group = []
- current_simtime_group = [df[0]]
- for i in range(1, len(df)):
- if abs(df[i] - df[i - 1]) <= threshold:
- current_simtime_group.append(df[i])
- else:
- simtime_group.append(current_simtime_group)
- current_simtime_group = [df[i]]
- simtime_group.append(current_simtime_group)
- return simtime_group
- def _is_overtake(self, lane_id, dx, dy, ego_speedx, ego_speedy):
- lane_start = lane_id[0]
- lane_end = lane_id[-1]
- start_condition = dx[0] * ego_speedx[0] + dy[0] * ego_speedy[0] >= 0
- end_condition = dx[-1] * ego_speedx[-1] + dy[-1] * ego_speedy[-1] < 0
- return lane_start == lane_end and start_condition and end_condition
- def _is_dxy_of_car(self, ego_df, obj_df):
- """
- :param df: objstate.csv and so on
- :param string_type: posX/Y or speedX/Y and so on
- :return: dataframe of dx/y and so on
- """
- car_dx = obj_df["posX"].values - ego_df["posX"].values
- car_dy = obj_df["posY"].values - ego_df["posY"].values
- return car_dx, car_dy
- # 在前车右侧超车、会车时超车、前车掉头时超车
- def illegal_overtake_with_car(self, window_width=250):
- # 获取csv文件中最短的帧数
- frame_id_length = len(self.ego_data["simFrame"])
- start_frame_id = self.ego_data["simFrame"].iloc[0] # 获取起始点的帧数
- while (start_frame_id + window_width) < frame_id_length:
- # if start_frame_id == 828:
- # print("end")
- simframe_window1 = list(
- np.arange(start_frame_id, start_frame_id + window_width)
- )
- simframe_window = list(map(int, simframe_window1))
- # 读取滑动窗口的dataframe数据
- ego_data_frames = self.ego_data[
- self.ego_data["simFrame"].isin(simframe_window)
- ]
- obj_data_frames = self.obj_data[
- self.obj_data["simFrame"].isin(simframe_window)
- ]
- other_data_frames = self.other_obj_data[
- self.other_obj_data["simFrame"].isin(simframe_window)
- ]
- # 读取前后的laneId
- lane_id = ego_data_frames["lane_id"].tolist()
- # 读取前后方向盘转角steeringWheel,
- driverctrl_start_state = ego_data_frames["posH"].iloc[0]
- driverctrl_end_state = ego_data_frames["posH"].iloc[-1]
- # 读取车辆前后的位置信息
- dx, dy = self._is_dxy_of_car(ego_data_frames, obj_data_frames)
- ego_speedx = ego_data_frames["speedX"].tolist()
- ego_speedy = ego_data_frames["speedY"].tolist()
- obj_speedx = obj_data_frames[obj_data_frames["playerId"] == 2][
- "speedX"
- ].tolist()
- obj_speedy = obj_data_frames[obj_data_frames["playerId"] == 2][
- "speedY"
- ].tolist()
- if len(other_data_frames) > 0:
- other_start_speedx = other_data_frames["speedX"].iloc[0]
- other_start_speedy = other_data_frames["speedY"].iloc[0]
- if (
- ego_speedx[0] * other_start_speedx
- + ego_speedy[0] * other_start_speedy
- < 0
- ):
- self.overtake_when_passing_car_count += self._is_overtake(
- lane_id, dx, dy, ego_speedx, ego_speedy
- )
- start_frame_id += window_width
- """
- 如果滑动窗口开始和最后的laneid一致;
- 方向盘转角前后方向相反(开始方向盘转角向右后来方向盘转角向左);
- 自车和前车的位置发生的交换;
- 则认为右超车
- """
- if driverctrl_start_state > 0 and driverctrl_end_state < 0:
- self.overtake_on_right_count += self._is_overtake(
- lane_id, dx, dy, ego_speedx, ego_speedy
- )
- start_frame_id += window_width
- elif (len(ego_speedx)*len(obj_speedx) > 0) and (ego_speedx[0] * obj_speedx[0] + ego_speedy[0] * obj_speedy[0] < 0):
- self.overtake_when_turn_around_count += self._is_overtake(
- lane_id, dx, dy, ego_speedx, ego_speedy
- )
- start_frame_id += window_width
- else:
- start_frame_id += 1
- # print(
- # f"在会车时超车{self.overtake_when_passing_car_count}次, 右侧超车{self.overtake_on_right_count}次, 在前车掉头时超车{self.overtake_when_turn_around_count}次")
- # 借道超车场景
- def overtake_in_forbid_lane(self):
- simTime = self.obj_data["simTime"].tolist()
- simtime_devide = self.different_road_area_simtime(simTime)
- if len(simtime_devide) == 0:
- self.overtake_in_forbid_lane_count += 0
- return
- else:
- for simtime in simtime_devide:
- lane_overtake = self.ego_data[self.ego_data["simTime"].isin(simtime)]
- try:
- lane_type = lane_overtake["lane_type"].tolist()
- if (50002 in lane_type and len(set(lane_type)) > 2) or (
- 50002 not in lane_type and len(set(lane_type)) > 1
- ):
- self.overtake_in_forbid_lane_count += 1
- except Exception as e:
- print("数据缺少lane_type信息")
- # print(f"在不该占用车道超车{self.overtake_in_forbid_lane_count}次")
- # 在匝道超车
- def overtake_in_ramp_area(self):
- ramp_simtime_list = self.ego_data[(self.ego_data["road_type"] == 19)][
- "simTime"
- ].tolist()
- if len(ramp_simtime_list) == 0:
- self.overtake_in_ramp_count += 0
- return
- else:
- ramp_simTime_list = self.different_road_area_simtime(ramp_simtime_list)
- for ramp_simtime in ramp_simTime_list:
- lane_id = self.ego_data["lane_id"].tolist()
- ego_in_ramp = self.ego_data[self.ego_data["simTime"].isin(ramp_simtime)]
- objstate_in_ramp = self.obj_data[
- self.obj_data["simTime"].isin(ramp_simtime)
- ]
- dx, dy = self._is_dxy_of_car(ego_in_ramp, objstate_in_ramp)
- ego_speedx = ego_in_ramp["speedX"].tolist()
- ego_speedy = ego_in_ramp["speedY"].tolist()
- if len(lane_id) > 0:
- self.overtake_in_ramp_count += self._is_overtake(
- lane_id, dx, dy, ego_speedx, ego_speedy
- )
- else:
- continue
- # print(f"在匝道超车{self.overtake_in_ramp_count}次")
- def overtake_in_tunnel_area(self):
- tunnel_simtime_list = self.ego_data[(self.ego_data["road_type"] == 15)][
- "simTime"
- ].tolist()
- if len(tunnel_simtime_list) == 0:
- self.overtake_in_tunnel_count += 0
- return
- else:
- tunnel_simTime_list = self.different_road_area_simtime(tunnel_simtime_list)
- for tunnel_simtime in tunnel_simTime_list:
- lane_id = self.ego_data["lane_id"].tolist()
- ego_in_tunnel = self.ego_data[self.ego_data["simTime"].isin(tunnel_simtime)]
- objstate_in_tunnel = self.obj_data[
- self.obj_data["simTime"].isin(tunnel_simtime)
- ]
- dx, dy = self._is_dxy_of_car(ego_in_tunnel, objstate_in_tunnel)
- ego_speedx = ego_in_tunnel["speedX"].tolist()
- ego_speedy = ego_in_tunnel["speedY"].tolist()
- if len(lane_id) > 0:
- self.overtake_in_tunnel_count += self._is_overtake(
- lane_id, dx, dy, ego_speedx, ego_speedy
- )
- else:
- continue
- # print(f"在隧道超车{self.overtake_in_tunnel_count}次")
- # 加速车道超车
- def overtake_on_accelerate_lane(self):
- accelerate_simtime_list = self.ego_data[self.ego_data["lane_type"] == 2][
- "simTime"
- ].tolist()
- if len(accelerate_simtime_list) == 0:
- self.overtake_on_accelerate_lane_count += 0
- return
- else:
- accelerate_simTime_list = self.different_road_area_simtime(
- accelerate_simtime_list
- )
- for accelerate_simtime in accelerate_simTime_list:
- lane_id = self.ego_data["lane_id"].tolist()
- ego_in_accelerate = self.ego_data[
- self.ego_data["simTime"].isin(accelerate_simtime)
- ]
- objstate_in_accelerate = self.obj_data[
- self.obj_data["simTime"].isin(accelerate_simtime)
- ]
- dx, dy = self._is_dxy_of_car(ego_in_accelerate, objstate_in_accelerate)
- ego_speedx = ego_in_accelerate["speedX"].tolist()
- ego_speedy = ego_in_accelerate["speedY"].tolist()
- self.overtake_on_accelerate_lane_count += self._is_overtake(
- lane_id, dx, dy, ego_speedx, ego_speedy
- )
- # print(f"在加速车道超车{self.overtake_on_accelerate_lane_count}次")
- # 减速车道超车
- def overtake_on_decelerate_lane(self):
- decelerate_simtime_list = self.ego_data[(self.ego_data["lane_type"] == 3)][
- "simTime"
- ].tolist()
- if len(decelerate_simtime_list) == 0:
- self.overtake_on_decelerate_lane_count += 0
- return
- else:
- decelerate_simTime_list = self.different_road_area_simtime(
- decelerate_simtime_list
- )
- for decelerate_simtime in decelerate_simTime_list:
- lane_id = self.ego_data["id"].tolist()
- ego_in_decelerate = self.ego_data[
- self.ego_data["simTime"].isin(decelerate_simtime)
- ]
- objstate_in_decelerate = self.obj_data[
- self.obj_data["simTime"].isin(decelerate_simtime)
- ]
- dx, dy = self._is_dxy_of_car(ego_in_decelerate, objstate_in_decelerate)
- ego_speedx = ego_in_decelerate["speedX"].tolist()
- ego_speedy = ego_in_decelerate["speedY"].tolist()
- self.overtake_on_decelerate_lane_count += self._is_overtake(
- lane_id, dx, dy, ego_speedx, ego_speedy
- )
- # print(f"在减速车道超车{self.overtake_on_decelerate_lane_count}次")
- # 在交叉路口
- def overtake_in_different_senerios(self):
- crossroad_simTime = self.ego_data[self.ego_data["interid"] != 10000][
- "simTime"
- ].tolist() # 判断是路口或者隧道区域
- if len(crossroad_simTime) == 0:
- self.overtake_in_different_senerios_count += 0
- return
- else:
- # 筛选在路口或者隧道区域的objectstate、driverctrl、laneinfo数据
- crossroad_ego = self.ego_data[self.ego_data["simTime"].isin(crossroad_simTime)]
- crossroad_objstate = self.obj_data[
- self.obj_data["simTime"].isin(crossroad_simTime)
- ]
- # crossroad_laneinfo = self.laneinfo_new_data[self.laneinfo_new_data['simTime'].isin(crossroad_simTime)]
- # 读取前后的laneId
- lane_id = crossroad_ego["lane_id"].tolist()
- # 读取车辆前后的位置信息
- dx, dy = self._is_dxy_of_car(crossroad_ego, crossroad_objstate)
- ego_speedx = crossroad_ego["speedX"].tolist()
- ego_speedy = crossroad_ego["speedY"].tolist()
- """
- 如果滑动窗口开始和最后的laneid一致;
- 自车和前车的位置发生的交换;
- 则认为发生超车
- """
- if len(lane_id) > 0:
- self.overtake_in_different_senerios_count += self._is_overtake(
- lane_id, dx, dy, ego_speedx, ego_speedy
- )
- else:
- pass
- # print(f"在路口超车{self.overtake_in_different_senerios_count}次")
- def statistic(self):
- if len(self.obj_data) == 0:
- pass
- else:
- self.overtake_in_forbid_lane()
- self.overtake_on_decelerate_lane()
- self.overtake_on_accelerate_lane()
- self.overtake_in_ramp_area()
- self.overtake_in_tunnel_area()
- self.overtake_in_different_senerios()
- self.illegal_overtake_with_car()
- self.calculated_value = {
- "overtake_on_right": self.overtake_on_right_count,
- "overtake_when_turn_around": self.overtake_when_turn_around_count,
- "overtake_when_passing_car": self.overtake_when_passing_car_count,
- "overtake_in_forbid_lane": self.overtake_in_forbid_lane_count,
- "overtake_in_ramp": self.overtake_in_ramp_count,
- "overtake_in_tunnel": self.overtake_in_tunnel_count,
- "overtake_on_accelerate_lane": self.overtake_on_accelerate_lane_count,
- "overtake_on_decelerate_lane": self.overtake_on_decelerate_lane_count,
- "overtake_in_different_senerios": self.overtake_in_different_senerios_count,
- }
- # self.logger.info(f"超车类指标统计完成,统计结果:{self.calculated_value}")
- return self.calculated_value
- class SlowdownViolation(object):
- """减速让行违规类"""
- def __init__(self, df_data):
- print("减速让行违规类-------------------------")
- self.traffic_violations_type = "减速让行违规类"
- self.object_items = []
- self.data = df_data.ego_data
- self.ego_data = (
- self.data[config.SLOWDOWN_INFO].copy().reset_index(drop=True)
- ) # Copy to avoid modifying the original DataFrame
- self.pedestrian_data = pd.DataFrame()
- self.object_items = set(df_data.object_df.type.tolist())
- if 13 in self.object_items: # 行人的type是13
- self.pedestrian_df = df_data.object_df[df_data.object_df.type == 13]
- self.pedestrian_data = (
- self.pedestrian_df[config.SLOWDOWN_INFO].copy().reset_index(drop=True)
- )
- self.slow_down_in_crosswalk_count = 0
- self.avoid_pedestrian_in_crosswalk_count = 0
- self.avoid_pedestrian_in_the_road_count = 0
- self.aviod_pedestrian_when_turning_count = 0
- def pedestrian_in_front_of_car(self):
- if len(self.pedestrian_data) == 0:
- return []
- else:
- self.ego_data["dx"] = self.ego_data["posX"] - self.pedestrian_data["posX"]
- self.ego_data["dy"] = self.ego_data["posY"] - self.pedestrian_data["posY"]
- self.ego_data["dist"] = np.sqrt(
- self.ego_data["dx"] ** 2 + self.ego_data["dy"] ** 2
- )
- self.ego_data["rela_pos"] = (
- self.ego_data["dx"] * self.ego_data["speedX"]
- + self.ego_data["dy"] * self.ego_data["speedY"]
- )
- simtime = self.ego_data[
- (self.ego_data["rela_pos"] > 0) & (self.ego_data["dist"] < 50)
- ]["simTime"].tolist()
- return simtime
- def different_road_area_simtime(self, df, threshold=0.6):
- if not df:
- return []
- simtime_group = []
- current_simtime_group = [df[0]]
- for i in range(1, len(df)):
- if abs(df[i] - df[i - 1]) <= threshold:
- current_simtime_group.append(df[i])
- else:
- simtime_group.append(current_simtime_group)
- current_simtime_group = [df[i]]
- simtime_group.append(current_simtime_group)
- return simtime_group
- def slow_down_in_crosswalk(self):
- # 筛选出路口或隧道区域的时间点
- crosswalk_simTime = self.ego_data[self.ego_data["crossid"] != 20000][
- "simTime"
- ].tolist()
- if len(crosswalk_simTime) == 0:
- self.slow_down_in_crosswalk_count += 0
- return
- else:
- crosswalk_simTime_divide = self.different_road_area_simtime(crosswalk_simTime)
- for crosswalk_simtime in crosswalk_simTime_divide:
- # 筛选出当前时间段内的数据
- # start_time, end_time = crosswalk_simtime
- start_time = crosswalk_simtime[0]
- end_time = crosswalk_simtime[-1]
- print(f"当前时间段:{start_time} - {end_time}")
- crosswalk_objstate = self.ego_data[
- (self.ego_data["simTime"] >= start_time)
- & (self.ego_data["simTime"] <= end_time)
- ]
- # 计算车辆速度
- ego_speedx = np.array(crosswalk_objstate["speedX"].tolist())
- ego_speedy = np.array(crosswalk_objstate["speedY"].tolist())
- ego_speed = np.sqrt(ego_speedx**2 + ego_speedy**2)
- # 判断是否超速
- if max(ego_speed) > 15 / 3.6: # 15 km/h 转换为 m/s
- self.slow_down_in_crosswalk_count += 1
- # 输出总次数
- print(f"在人行横道超车总次数:{self.slow_down_in_crosswalk_count}次")
- def avoid_pedestrian_in_crosswalk(self):
- crosswalk_simTime = self.ego_data[self.ego_data["crossid"] != 20000][
- "simTime"
- ].tolist()
- if len(crosswalk_simTime) == 0:
- self.avoid_pedestrian_in_crosswalk_count += 0
- return
- else:
- crosswalk_simTime_devide = self.different_road_area_simtime(crosswalk_simTime)
- for crosswalk_simtime in crosswalk_simTime_devide:
- if not self.pedestrian_data.empty:
- crosswalk_objstate = self.pedestrian_data[
- self.pedestrian_data["simTime"].isin(crosswalk_simtime)
- ]
- else:
- crosswalk_objstate = pd.DataFrame()
- if len(crosswalk_objstate) > 0:
- pedestrian_simtime = crosswalk_objstate["simTime"]
- pedestrian_objstate = crosswalk_objstate[
- crosswalk_objstate["simTime"].isin(pedestrian_simtime)
- ]
- ego_speed = np.sqrt(
- pedestrian_objstate["speedX"] ** 2
- + pedestrian_objstate["speedY"] ** 2
- )
- if ego_speed.any() > 0:
- self.avoid_pedestrian_in_crosswalk_count += 1
- def avoid_pedestrian_in_the_road(self):
- simtime = self.pedestrian_in_front_of_car()
- if len(simtime) == 0:
- self.avoid_pedestrian_in_the_road_count += 0
- return
- else:
- pedestrian_on_the_road = self.pedestrian_data[
- self.pedestrian_data["simTime"].isin(simtime)
- ]
- simTime = pedestrian_on_the_road["simTime"].tolist()
- simTime_devide = self.different_road_area_simtime(simTime)
- if len(simTime_devide) == 0:
- pass
- else:
- for simtime1 in simTime_devide:
- sub_pedestrian_on_the_road = pedestrian_on_the_road[
- pedestrian_on_the_road["simTime"].isin(simtime1)
- ]
- ego_car = self.ego_data.loc[(self.ego_data["simTime"].isin(simtime1))]
- dist = np.sqrt(
- (ego_car["posX"].values - sub_pedestrian_on_the_road["posX"].values)
- ** 2
- + (
- ego_car["posY"].values
- - sub_pedestrian_on_the_road["posY"].values
- )
- ** 2
- )
- speed = np.sqrt(
- ego_car["speedX"].values ** 2 + ego_car["speedY"].values ** 2
- )
- data = {"dist": dist, "speed": speed}
- new_ego_car = pd.DataFrame(data)
- new_ego_car = new_ego_car.assign(
- Column3=lambda x: (x["dist"] < 1) & (x["speed"] == 0)
- )
- if new_ego_car["Column3"].any():
- self.avoid_pedestrian_in_the_road_count += 1
- def aviod_pedestrian_when_turning(self):
- pedestrian_simtime_list = self.pedestrian_in_front_of_car()
- if len(pedestrian_simtime_list) > 0:
- simtime_list = self.ego_data[
- (self.ego_data["simTime"].isin(pedestrian_simtime_list))
- & (self.ego_data["lane_type"] == 20)
- ]["simTime"].tolist()
- simTime_list = self.different_road_area_simtime(simtime_list)
- pedestrian_on_the_road = self.pedestrian_data[
- self.pedestrian_data["simTime"].isin(simtime_list)
- ]
- if len(simTime_list) == 0:
- pass
- else:
- for simtime in simTime_list:
- sub_pedestrian_on_the_road = pedestrian_on_the_road[
- pedestrian_on_the_road["simTime"].isin(simtime)
- ]
- if len(sub_pedestrian_on_the_road) > 0:
- ego_car = self.ego_data.loc[(self.ego_data["simTime"].isin(simtime))]
- ego_car["dist"] = np.sqrt(
- (ego_car["posX"].values - sub_pedestrian_on_the_road["posX"].values)
- ** 2
- + (
- ego_car["posY"].values
- - sub_pedestrian_on_the_road["posY"].values
- )
- ** 2
- )
- ego_car["speed"] = np.sqrt(
- ego_car["speedX"].values ** 2 + ego_car["speedY"].values ** 2
- )
- if any(ego_car["speed"].tolist()) != 0:
- self.aviod_pedestrian_when_turning_count += 1
- def statistic(self):
- self.slow_down_in_crosswalk()
- self.avoid_pedestrian_in_crosswalk()
- self.avoid_pedestrian_in_the_road()
- self.aviod_pedestrian_when_turning()
- self.calculated_value = {
- "slow_down_in_crosswalk": self.slow_down_in_crosswalk_count,
- "avoid_pedestrian_in_crosswalk": self.avoid_pedestrian_in_crosswalk_count,
- "avoid_pedestrian_in_the_road": self.avoid_pedestrian_in_the_road_count,
- "aviod_pedestrian_when_turning": self.aviod_pedestrian_when_turning_count,
- }
- # self.logger.info(f"减速让行类指标统计完成,统计结果:{self.calculated_value}")
- return self.calculated_value
- class TurnaroundViolation(object):
- def __init__(self, df_data):
- print("掉头违规类初始化中...")
- self.traffic_violations_type = "掉头违规类"
- self.data = df_data.obj_data[1]
- self.ego_data = (
- self.data[config.TURNAROUND_INFO].copy().reset_index(drop=True)
- ) # Copy to avoid modifying the original DataFrame
- self.pedestrian_data = pd.DataFrame()
- self.object_items = set(df_data.object_df.type.tolist())
- if 13 in self.object_items: # 行人的type是13
- self.pedestrian_df = df_data.object_df[df_data.object_df.type == 13]
- self.pedestrian_data = (
- self.pedestrian_df[config.SLOWDOWN_INFO].copy().reset_index(drop=True)
- )
- self.turning_in_forbiden_turn_back_sign_count = 0
- self.turning_in_forbiden_turn_left_sign_count = 0
- self.avoid_pedestrian_when_turn_back_count = 0
- def pedestrian_in_front_of_car(self):
- if len(self.pedestrian_data) == 0:
- return []
- else:
- self.ego_data["dx"] = self.ego_data["posX"] - self.pedestrian_data["posX"]
- self.ego_data["dy"] = self.ego_data["posY"] - self.pedestrian_data["posY"]
- self.ego_data["dist"] = np.sqrt(
- self.ego_data["dx"] ** 2 + self.ego_data["dy"] ** 2
- )
- self.ego_data["rela_pos"] = (
- self.ego_data["dx"] * self.ego_data["speedX"]
- + self.ego_data["dy"] * self.ego_data["speedY"]
- )
- simtime = self.ego_data[
- (self.ego_data["rela_pos"] > 0) & (self.ego_data["dist"] < 50)
- ]["simTime"].tolist()
- return simtime
- def different_road_area_simtime(self, df, threshold=0.5):
- if not df:
- return []
- simtime_group = []
- current_simtime_group = [df[0]]
- for i in range(1, len(df)):
- if abs(df[i] - df[i - 1]) <= threshold:
- current_simtime_group.append(df[i])
- else:
- simtime_group.append(current_simtime_group)
- current_simtime_group = [df[i]]
- simtime_group.append(current_simtime_group)
- return simtime_group
- def turn_back_in_forbiden_sign(self):
- """
- 禁止掉头type = 8
- """
- forbiden_turn_back_simTime = self.ego_data[self.ego_data["sign_type1"] == 8][
- "simTime"
- ].tolist()
- forbiden_turn_left_simTime = self.ego_data[self.ego_data["sign_type1"] == 9][
- "simTime"
- ].tolist()
- forbiden_turn_back_simtime_devide = self.different_road_area_simtime(
- forbiden_turn_back_simTime
- )
- forbiden_turn_left_simtime_devide = self.different_road_area_simtime(
- forbiden_turn_left_simTime
- )
- if len(forbiden_turn_back_simtime_devide) == 0:
- pass
- else:
- for forbiden_turn_back_simtime in forbiden_turn_back_simtime_devide:
- ego_car1 = self.ego_data.loc[
- (self.ego_data["simFrame"].isin(forbiden_turn_back_simtime))
- ]
- ego_start_speedx1 = ego_car1["speedX"].iloc[0]
- ego_start_speedy1 = ego_car1["speedY"].iloc[0]
- ego_end_speedx1 = ego_car1["speedX"].iloc[-1]
- ego_end_speedy1 = ego_car1["speedY"].iloc[-1]
- if (
- ego_end_speedx1 * ego_start_speedx1
- + ego_end_speedy1 * ego_start_speedy1
- < 0
- ):
- self.turning_in_forbiden_turn_back_sign_count += 1
- if len(forbiden_turn_left_simtime_devide) == 0:
- pass
- else:
- for forbiden_turn_left_simtime in forbiden_turn_left_simtime_devide:
- ego_car2 = self.ego_data.loc[
- (self.ego_data["simFrame"].isin(forbiden_turn_left_simtime))
- ]
- ego_start_speedx2 = ego_car2["speedX"].iloc[0]
- ego_start_speedy2 = ego_car2["speedY"].iloc[0]
- ego_end_speedx2 = ego_car2["speedX"].iloc[-1]
- ego_end_speedy2 = ego_car2["speedY"].iloc[-1]
- if (
- ego_end_speedx2 * ego_start_speedx2
- + ego_end_speedy2 * ego_start_speedy2
- < 0
- ):
- self.turning_in_forbiden_turn_left_sign_count += 1
- def avoid_pedestrian_when_turn_back(self):
- sensor_on_intersection = self.pedestrian_in_front_of_car()
- avoid_pedestrian_when_turn_back_simTime_list = self.ego_data[
- self.ego_data["lane_type"] == 20
- ]["simTime"].tolist()
- avoid_pedestrian_when_turn_back_simTime_devide = (
- self.different_road_area_simtime(
- avoid_pedestrian_when_turn_back_simTime_list
- )
- )
- if (len(sensor_on_intersection) > 0) and (len(avoid_pedestrian_when_turn_back_simTime_devide) > 0):
- for (
- avoid_pedestrian_when_turn_back_simtime
- ) in avoid_pedestrian_when_turn_back_simTime_devide:
- pedestrian_in_intersection_simtime = self.pedestrian_data[
- self.pedestrian_data["simTime"].isin(
- avoid_pedestrian_when_turn_back_simtime
- )
- ].tolist()
- ego_df = self.ego_data[
- self.ego_data["simTime"].isin(pedestrian_in_intersection_simtime)
- ].reset_index(drop=True)
- pedestrian_df = self.pedestrian_data[
- self.pedestrian_data["simTime"].isin(
- pedestrian_in_intersection_simtime
- )
- ].reset_index(drop=True)
- ego_df["dist"] = np.sqrt(
- (ego_df["posx"] - pedestrian_df["posx"]) ** 2
- + (ego_df["posy"] - pedestrian_df["posy"]) ** 2
- )
- ego_df["speed"] = np.sqrt(ego_df["speedx"] ** 2 + ego_df["speedy"] ** 2)
- if (any(ego_df["speed"].tolist()) != 0) or (any(ego_df["dist"].tolist()) == 0):
- self.avoid_pedestrian_when_turn_back_count += 1
- def statistic(self):
- self.turn_back_in_forbiden_sign()
- self.avoid_pedestrian_when_turn_back()
- self.calculated_value = {
- "turn_back_in_forbiden_turn_back_sign": self.turning_in_forbiden_turn_back_sign_count,
- "turn_back_in_forbiden_turn_left_sign": self.turning_in_forbiden_turn_left_sign_count,
- "avoid_pedestrian_when_turn_back": self.avoid_pedestrian_when_turn_back_count,
- }
- # self.logger.info(f"掉头违规类指标统计完成,统计结果:{self.calculated_value}")
- return self.calculated_value
- class WrongWayViolation:
- """停车违规类"""
- def __init__(self, df_data):
- print("停车违规类初始化中...")
- self.traffic_violations_type = "停车违规类"
- self.data = df_data.obj_data[1]
- # 初始化违规统计
- self.violation_count = {
- "urbanExpresswayOrHighwayDrivingLaneStopped": 0,
- "urbanExpresswayOrHighwayEmergencyLaneStopped": 0,
- "urbanExpresswayEmergencyLaneDriving": 0,
- }
- def process_violations(self):
- """处理停车或者紧急车道行驶违规数据"""
- # 提取有效道路类型
- urban_expressway_or_highway = {1, 2}
- driving_lane = {1, 4, 5, 6}
- emergency_lane = {12}
- self.data["v"] *= 3.6 # 转换速度
- # 使用向量化和条件判断进行违规判定
- conditions = [
- (
- self.data["road_fc"].isin(urban_expressway_or_highway)
- & self.data["lane_type"].isin(driving_lane)
- & (self.data["v"] == 0)
- ),
- (
- self.data["road_fc"].isin(urban_expressway_or_highway)
- & self.data["lane_type"].isin(emergency_lane)
- & (self.data["v"] == 0)
- ),
- (
- self.data["road_fc"].isin(urban_expressway_or_highway)
- & self.data["lane_type"].isin(emergency_lane)
- & (self.data["v"] != 0)
- ),
- ]
- violation_types = [
- "urbanExpresswayOrHighwayDrivingLaneStopped",
- "urbanExpresswayOrHighwayEmergencyLaneStopped",
- "urbanExpresswayEmergencyLaneDriving",
- ]
- # 设置违规类型
- self.data["violation_type"] = None
- for condition, violation_type in zip(conditions, violation_types):
- self.data.loc[condition, "violation_type"] = violation_type
- # 统计违规情况
- self.violation_count = (
- self.data["violation_type"]
- .value_counts()
- .reindex(violation_types, fill_value=0)
- .to_dict()
- )
- def statistic(self) -> str:
- self.process_violations()
- # self.logger.info(f"停车违规类指标统计完成,统计结果:{self.violation_count}")
- return self.violation_count
- class SpeedingViolation(object):
- """超速违规类"""
- """ 这里没有道路标志牌限速指标,因为shp地图中没有这个信息"""
- def __init__(self, df_data):
- print("超速违规类初始化中...")
- self.traffic_violations_type = "超速违规类"
- self.data = df_data.obj_data[
- 1
- ] # Copy to avoid modifying the original DataFrame
- # 初始化违规统计
- self.violation_counts = {
- "urbanExpresswayOrHighwaySpeedOverLimit50": 0,
- "urbanExpresswayOrHighwaySpeedOverLimit20to50": 0,
- "urbanExpresswayOrHighwaySpeedOverLimit0to20": 0,
- "urbanExpresswayOrHighwaySpeedUnderLimit": 0,
- "generalRoadSpeedOverLimit50": 0,
- "generalRoadSpeedOverLimit20to50": 0,
- }
- def process_violations(self):
- """处理数据帧,检查超速和其他违规行为"""
- # 提取有效道路类型
- urban_expressway_or_highway = {1, 2} # 使用大括号直接创建集合
- general_road = {3} # 直接创建包含一个元素的集合
- self.data["v"] *= 3.6 # 转换速度
- # 违规判定
- conditions = [
- (
- self.data["road_fc"].isin(urban_expressway_or_highway)
- & (self.data["v"] > self.data["road_speed_max"] * 1.5)
- ),
- (
- self.data["road_fc"].isin(urban_expressway_or_highway)
- & (self.data["v"] > self.data["road_speed_max"] * 1.2)
- & (self.data["v"] <= self.data["road_speed_max"] * 1.5)
- ),
- (
- self.data["road_fc"].isin(urban_expressway_or_highway)
- & (self.data["v"] > self.data["road_speed_max"])
- & (self.data["v"] <= self.data["road_speed_max"] * 1.2)
- ),
- (
- self.data["road_fc"].isin(urban_expressway_or_highway)
- & (self.data["v"] < self.data["road_speed_min"])
- ),
- (
- self.data["road_fc"].isin(general_road)
- & (self.data["v"] > self.data["road_speed_max"] * 1.5)
- ),
- (
- self.data["road_fc"].isin(general_road)
- & (self.data["v"] > self.data["road_speed_max"] * 1.2)
- & (self.data["v"] <= self.data["road_speed_max"] * 1.5)
- ),
- ]
- violation_types = [
- "urbanExpresswayOrHighwaySpeedOverLimit50",
- "urbanExpresswayOrHighwaySpeedOverLimit20to50",
- "urbanExpresswayOrHighwaySpeedOverLimit0to20",
- "urbanExpresswayOrHighwaySpeedUnderLimit",
- "generalRoadSpeedOverLimit50",
- "generalRoadSpeedOverLimit20to50",
- ]
- # 设置违规类型
- self.data["violation_type"] = None
- for condition, violation_type in zip(conditions, violation_types):
- self.data.loc[condition, "violation_type"] = violation_type
- # 统计各类违规情况
- self.violation_counts = self.data["violation_type"].value_counts().to_dict()
- def statistic(self) -> str:
- # 处理数据
- self.process_violations()
- # self.logger.info(f"超速违规类指标统计完成,统计结果:{self.violation_counts}")
- return self.violation_counts
- class TrafficLightViolation(object):
- """违反交通灯类"""
- """需要补充判断车辆是左转直行还是右转,判断红绿灯是方向性红绿灯还是通过性红绿灯"""
- def __init__(self, df_data):
- """初始化方法"""
- self.traffic_violations_type = "违反交通灯类"
- print("违反交通灯类 类初始化中...")
- self.config = df_data.vehicle_config
- self.data_ego = df_data.ego_data # 获取数据
- self.violation_counts = {
- "trafficSignalViolation": 0,
- "illegalDrivingOrParkingAtCrossroads": 0,
- }
- # 处理数据并判定违规
- self.process_violations()
- def is_point_cross_line(self, point, stop_line_points):
- """
- 判断车辆的某一坐标点是否跨越了由两个点定义的停止线(线段)。
- 使用向量叉积判断点是否在线段上,并通过计算车辆的航向角来判断是否跨越了停止线。
- :param point: 车辆位置点 (x, y, heading),包括 x, y 位置以及朝向角度(弧度制)
- :param stop_line_points: 停止线两个端点 [[x1, y1], [x2, y2]]
- :return: True 如果车辆跨越了停止线,否则 False
- """
- line_vector = np.array(
- [
- stop_line_points[1][0] - stop_line_points[0][0],
- stop_line_points[1][1] - stop_line_points[0][1],
- ]
- )
- point_vector = np.array(
- [point[0] - stop_line_points[0][0], point[1] - stop_line_points[0][1]]
- )
- cross_product = np.cross(line_vector, point_vector)
- if cross_product != 0:
- return False
- mid_point = (
- np.array([stop_line_points[0][0], stop_line_points[0][1]])
- + 0.5 * line_vector
- )
- axletree_to_mid_vector = np.array(
- [point[0] - mid_point[0], point[1] - mid_point[1]]
- )
- direction_vector = np.array([math.cos(point[2]), math.sin(point[2])])
- norm_axletree_to_mid = np.linalg.norm(axletree_to_mid_vector)
- norm_direction = np.linalg.norm(direction_vector)
- if norm_axletree_to_mid == 0 or norm_direction == 0:
- return False
- cos_theta = np.dot(axletree_to_mid_vector, direction_vector) / (
- norm_axletree_to_mid * norm_direction
- )
- angle_theta = math.degrees(math.acos(cos_theta))
- return angle_theta <= 90
- def _filter_data(self):
- """过滤数据,筛选出需要分析的记录"""
- return self.data_ego[
- (self.data_ego["stopline_id"] != -1)
- & (self.data_ego["stopline_type"] == 1)
- & (self.data_ego["trafficlight_id"] != -1)
- ]
- def _group_data(self, filtered_data):
- """按时间差对数据进行分组"""
- filtered_data["time_diff"] = filtered_data["simTime"].diff().fillna(0)
- threshold = 0.5
- filtered_data["group"] = (filtered_data["time_diff"] > threshold).cumsum()
- return filtered_data.groupby("group")
- def _analyze_group(self, group_data):
- """分析单个分组的数据,判断是否闯红灯"""
- photos = []
- stop_in_intersection = False
- for _, row in group_data.iterrows():
- vehicle_pos = np.array([row["posX"], row["posY"], row["posH"]])
- stop_line_points = [
- [row["stopline_x1"], row["stopline_y1"]],
- [row["stopline_x2"], row["stopline_y2"]],
- ]
- stateMask = row["stateMask"]
- heading_vector = np.array([np.cos(row["posH"]), np.sin(row["posH"])])
- heading_vector = heading_vector / np.linalg.norm(heading_vector)
- # with open(self.config_path / "vehicle_config.yaml", 'r') as f:
- # config = yaml.load(f, Loader=yaml.FullLoader)
- front_wheel_pos = vehicle_pos[:2] + self.config["EGO_WHEELBASS"] * heading_vector
- rear_wheel_pos = vehicle_pos[:2] - self.config["EGO_WHEELBASS"] * heading_vector
- dist = math.sqrt(
- (row["posX"] - row["traffic_light_x"]) ** 2
- + (row["posY"] - row["traffic_light_y"]) ** 2
- )
- if abs(row["speedH"]) > 0.01 or abs(row["speedH"]) < 0.01:
- has_crossed_line_front = (
- self.is_point_cross_line(front_wheel_pos, stop_line_points)
- and stateMask == 1
- )
- has_crossed_line_rear = (
- self.is_point_cross_line(rear_wheel_pos, stop_line_points)
- and row["v"] > 0
- and stateMask == 1
- )
- has_stop_in_intersection = has_crossed_line_front and row["v"] == 0
- has_passed_intersection = has_crossed_line_front and dist < 1.0
- # print(f'time: {row["simTime"]}, speed: {row["speedH"]}, posH: {row["posH"]}, dist: {dist:.2f}, has_stop_in_intersection: {has_stop_in_intersection}, has_passed_intersection: {has_passed_intersection}')
- photos.extend(
- [
- has_crossed_line_front,
- has_crossed_line_rear,
- has_passed_intersection,
- has_stop_in_intersection,
- ]
- )
- stop_in_intersection = has_passed_intersection
- return photos, stop_in_intersection
- def is_vehicle_run_a_red_light(self):
- """判断车辆是否闯红灯"""
- filtered_data = self._filter_data()
- grouped_data = self._group_data(filtered_data)
- self.photos_group = []
- self.stop_in_intersections = []
- for _, group_data in grouped_data:
- photos, stop_in_intersection = self._analyze_group(group_data)
- self.photos_group.append(photos)
- self.stop_in_intersections.append(stop_in_intersection)
- def process_violations(self):
- """处理数据并判定违规"""
- self.is_vehicle_run_a_red_light()
- count_1 = sum(all(photos) for photos in self.photos_group)
- count_2 = sum(
- stop_in_intersection for stop_in_intersection in self.stop_in_intersections
- )
- self.violation_counts["trafficSignalViolation"] = count_1
- self.violation_counts["illegalDrivingOrParkingAtCrossroads"] = count_2
- def statistic(self):
- """返回统计结果"""
- return self.violation_counts
- class WarningViolation(object):
- """警告性违规类"""
- def __init__(self, df_data):
- self.traffic_violations_type = "警告性违规类"
- print("警告性违规类 类初始化中...")
- self.config = df_data.vehicle_config
- self.data_ego = df_data.obj_data[1]
- self.data = self.data_ego.copy() # 避免修改原始 DataFrame
- self.violation_counts = {
- "generalRoadIrregularLaneUse": 0, # 驾驶机动车在高速公路、城市快速路以外的道路上不按规定车道行驶
- "urbanExpresswayOrHighwayRideLaneDivider": 0, # 机动车在高速公路或者城市快速路上骑、轧车行道分界线
- }
- def process_violations(self):
- general_road = {3} # 普通道路
- lane_type = {11} # 车道类型 # 10: 机动车道,11: 非机动车道
- # with open(self.config_path / "vehicle_config.yaml", 'r') as f:
- # config = yaml.load(f, Loader=yaml.FullLoader)
- car_width = self.config["CAR_WIDTH"]
- lane_width = self.data["lane_width"] # 假定 'lane_width' 在数据中存在
- # 驾驶机动车在高速公路、城市快速路以外的道路上不按规定车道行驶
- # 使用布尔索引来筛选满足条件的行
- condition = (self.data["road_fc"].isin(general_road)) & (
- self.data["lane_type"].isin(lane_type)
- )
- # 创建一个新的列,并根据条件设置值
- self.data["is_violation"] = condition
- # 统计满足条件的连续时间段
- violation_segments = self.count_continuous_violations(
- self.data["is_violation"], self.data["simTime"]
- )
- # 更新骑行车道线违规计数
- self.violation_counts["generalRoadIrregularLaneUse"] += len(violation_segments)
- # 机动车在高速公路或者城市快速路上骑、轧车行道分界线
- # 计算阈值
- threshold = (lane_width - car_width) / 2
- # 找到满足条件的行
- self.data["is_violation"] = self.data["laneOffset"] > threshold
- # 统计满足条件的连续时间段
- violation_segments = self.count_continuous_violations(
- self.data["is_violation"], self.data["simTime"]
- )
- # 更新骑行车道线违规计数
- self.violation_counts["urbanExpresswayOrHighwayRideLaneDivider"] += len(
- violation_segments
- )
- def count_continuous_violations(self, violation_series, time_series):
- """统计连续违规的时间段数量"""
- continuous_segments = []
- current_segment = []
- for is_violation, time in zip(violation_series, time_series):
- if is_violation:
- if not current_segment: # 新的连续段开始
- current_segment.append(time)
- else:
- if current_segment: # 连续段结束
- continuous_segments.append(current_segment)
- current_segment = []
- # 检查是否有一个未结束的连续段在最后
- if current_segment:
- continuous_segments.append(current_segment)
- return continuous_segments
- def statistic(self):
- # 处理数据
- self.process_violations()
- # self.logger.info(f"警告性违规类指标统计完成,统计结果:{self.violation_counts}")
- return self.violation_counts
- class TrafficSignViolation(object):
- """交通标志违规类"""
- def __init__(self, df_data):
- self.traffic_violations_type = "交通标志违规类"
- print("交通标志违规类 类初始化中...")
- self.data_ego = df_data.obj_data[1]
- self.ego_data = (
- self.data_ego[config.TRFFICSIGN_INFO].copy().reset_index(drop=True)
- )
- self.data_ego = self.data_ego.copy() # 避免修改原始 DataFrame
- self.violation_counts = {
- "NoStraightThrough": 0, # 禁止直行标志地方直行
- "SpeedLimitViolation": 0, # 违反限速规定
- "MinimumSpeedLimitViolation": 0, # 违反最低限速规定
- }
- # def checkForProhibitionViolation(self):
- # """禁令标志判断违规:7 禁止直行,12:限制速度"""
- # # 筛选出sign_type1为7(禁止直行)
- # violation_straight_df = self.data_ego[self.data_ego["sign_type1"] == 7]
- # violation_speed_limit_df = self.data_ego[self.data_ego["sign_type1"] == 12]
- def checkForProhibitionViolation(self):
- """禁令标志判断违规:7 禁止直行,12:限制速度"""
- # 筛选出 sign_type1 为7(禁止直行)的数据
- violation_straight_df = self.data_ego[self.data_ego["sign_type1"] == 7].copy()
-
- # 判断车辆是否在禁止直行路段直行
- if not violation_straight_df.empty:
- # 按时间戳排序(假设数据按时间顺序处理)
- violation_straight_df = violation_straight_df.sort_values('simTime')
-
- # 计算航向角变化(前后时间点的差值绝对值)
- violation_straight_df['posH_diff'] = violation_straight_df['posH'].diff().abs()
-
- # 筛选条件:航向角变化小于阈值(例如5度)且速度不为0
- threshold = 5 # 单位:度(根据场景调整)
- mask = (violation_straight_df['posH_diff'] <= threshold) & (violation_straight_df['v'] > 0)
- straight_violations = violation_straight_df[mask]
-
- # 统计违规次数或记录违规数据
- self.violation_counts["prohibition_straight"] = len(straight_violations)
-
-
- # 限制速度判断(原代码)
- violation_speed_limit_df = self.data_ego[self.data_ego["sign_type1"] == 12]
- if violation_speed_limit_df.empty:
- mask = self.data_ego["v"] > self.data_ego["sign_speed"]
- self.violation_counts["SpeedLimitViolation"] = len(self.data_ego[mask])
- def checkForInstructionViolation(self):
- """限速标志属于指示性标志:13:最低限速"""
- violation_minimum_speed_limit_df = self.data_ego[self.data_ego["sign_type1"] == 13]
- if violation_minimum_speed_limit_df.empty:
- mask = self.data_ego["v"] < self.data_ego["sign_speed"]
- self.violation_counts["MinimumSpeedLimitViolation"] = len(self.data_ego[mask])
- def statistic(self):
- self.checkForProhibitionViolation()
- self.checkForInstructionViolation()
- # self.logger.info(f"交通标志违规类指标统计完成,统计结果:{self.violation_counts}")
- return self.violation_counts
- class ViolationManager:
- """违规管理类,用于管理所有违规行为"""
- def __init__(self, data_processed):
- self.violations = []
- self.data = data_processed
- self.config = data_processed.traffic_config
- self.over_take_violation = OvertakingViolation(self.data)
- self.slow_down_violation = SlowdownViolation(self.data)
- self.wrong_way_violation = WrongWayViolation(self.data)
- self.speeding_violation = SpeedingViolation(self.data)
- self.traffic_light_violation = TrafficLightViolation(self.data)
- self.warning_violation = WarningViolation(self.data)
- # self.report_statistic()
- def report_statistic(self):
- traffic_result = self.over_take_violation.statistic()
- traffic_result.update(self.slow_down_violation.statistic())
- traffic_result.update(self.traffic_light_violation.statistic())
- traffic_result.update(self.wrong_way_violation.statistic())
- traffic_result.update(self.speeding_violation.statistic())
- traffic_result.update(self.warning_violation.statistic())
- evaluator = Score(self.config)
- result = evaluator.evaluate(traffic_result)
- print("\n[交规类表现及得分情况]")
- # self.logger.info(f"Traffic Result:{traffic_result}")
- return result
- # 示例使用
- if __name__ == "__main__":
- pass
|