#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################## # # Copyright (c) 2024 CICV, Inc. All Rights Reserved # ################################################################## """ @Authors: zhanghaiwen(zhanghaiwen@china-icv.cn) @Data: 2024/10/17 @Last Modified: 2024/10/17 @Summary: Evaluation functions """ import os import numpy as np import pandas as pd import yaml from modules.lib.log_manager import LogManager # from lib import log # 确保这个路径是正确的,或者调整它 # logger = None # 初始化为 None class DataPreprocessing: def __init__(self, data_path, config_path): # Initialize paths and data containers # self.logger = log.get_logger() self.data_path = data_path self.case_name = os.path.basename(os.path.normpath(data_path)) self.config_path = config_path # Initialize DataFrames self.object_df = pd.DataFrame() self.driver_ctrl_df = pd.DataFrame() self.vehicle_sys_df = pd.DataFrame() self.ego_data_df = pd.DataFrame() # Environment data self.lane_info_df = pd.DataFrame() self.road_mark_df = pd.DataFrame() self.road_pos_df = pd.DataFrame() self.traffic_light_df = pd.DataFrame() self.traffic_signal_df = pd.DataFrame() self.vehicle_config = {} self.safety_config = {} self.comfort_config = {} self.efficient_config = {} self.function_config = {} self.traffic_config = {} # Initialize data for later processing self.obj_data = {} self.ego_data = {} self.obj_id_list = [] # Data quality level self.data_quality_level = 15 # Process mode and prepare report information self._process_mode() self._get_yaml_config() self.report_info = self._get_report_info(self.obj_data.get(1, pd.DataFrame())) def _process_mode(self): """Handle different processing modes.""" self._real_process_object_df() def _get_yaml_config(self): with open(self.config_path, 'r') as f: full_config = yaml.safe_load(f) modules = ["vehicle", "T_threshold", "safety", "comfort", "efficient", "function", "traffic"] # 1. 初始化 vehicle_config(不涉及 T_threshold 合并) self.vehicle_config = full_config[modules[0]] # 2. 定义 T_threshold_config(封装为字典) T_threshold_config = {"T_threshold": full_config[modules[1]]} # 3. 统一处理需要合并 T_threshold 的模块 # 3.1 safety_config self.safety_config = {"safety": full_config[modules[2]]} self.safety_config.update(T_threshold_config) # 3.2 comfort_config self.comfort_config = {"comfort": full_config[modules[3]]} self.comfort_config.update(T_threshold_config) # 3.3 efficient_config self.efficient_config = {"efficient": full_config[modules[4]]} self.efficient_config.update(T_threshold_config) # 3.4 function_config self.function_config = {"function": full_config[modules[5]]} self.function_config.update(T_threshold_config) # 3.5 traffic_config self.traffic_config = {"traffic": full_config[modules[6]]} self.traffic_config.update(T_threshold_config) @staticmethod def cal_velocity(lat_v, lon_v): """Calculate resultant velocity from lateral and longitudinal components.""" return np.sqrt(lat_v**2 + lon_v**2) def _real_process_object_df(self): """Process the object DataFrame.""" try: # 读取 CSV 文件 merged_csv_path = os.path.join(self.data_path, "merged_ObjState.csv") self.object_df = pd.read_csv( merged_csv_path, dtype={"simTime": float} ).drop_duplicates(subset=["simTime", "simFrame", "playerId"]) data = self.object_df.copy() # Calculate common parameters data["lat_v"] = data["speedY"] * 1 data["lon_v"] = data["speedX"] * 1 data["v"] = data.apply( lambda row: self.cal_velocity(row["lat_v"], row["lon_v"]), axis=1 ) data["v"] = data["v"] # km/h # Calculate acceleration components data["lat_acc"] = data["accelY"] * 1 data["lon_acc"] = data["accelX"] * 1 data["accel"] = data.apply( lambda row: self.cal_velocity(row["lat_acc"], row["lon_acc"]), axis=1 ) # Drop rows with missing 'type' and reset index data = data.dropna(subset=["type"]) data.reset_index(drop=True, inplace=True) self.object_df = data.copy() # Calculate respective parameters for each object for obj_id, obj_data in data.groupby("playerId"): self.obj_data[obj_id] = self._calculate_object_parameters(obj_data) # Get object id list EGO_PLAYER_ID = 1 self.obj_id_list = list(self.obj_data.keys()) self.ego_data = self.obj_data[EGO_PLAYER_ID] except Exception as e: # self.logger.error(f"Error processing object DataFrame: {e}") raise def _calculate_object_parameters(self, obj_data): """Calculate additional parameters for a single object.""" obj_data = obj_data.copy() obj_data["time_diff"] = obj_data["simTime"].diff() obj_data["lat_acc_diff"] = obj_data["lat_acc"].diff() obj_data["lon_acc_diff"] = obj_data["lon_acc"].diff() obj_data["yawrate_diff"] = obj_data["speedH"].diff() obj_data["lat_acc_roc"] = ( obj_data["lat_acc_diff"] / obj_data["time_diff"] ).replace([np.inf, -np.inf], [9999, -9999]) obj_data["lon_acc_roc"] = ( obj_data["lon_acc_diff"] / obj_data["time_diff"] ).replace([np.inf, -np.inf], [9999, -9999]) obj_data["accelH"] = ( obj_data["yawrate_diff"] / obj_data["time_diff"] ).replace([np.inf, -np.inf], [9999, -9999]) return obj_data def _get_driver_ctrl_data(self, df): """ Process and get driver control information. Args: df: A DataFrame containing driver control data. Returns: A dictionary of driver control info. """ driver_ctrl_data = { "time_list": df["simTime"].round(2).tolist(), "frame_list": df["simFrame"].tolist(), "brakePedal_list": ( (df["brakePedal"] * 100).tolist() if df["brakePedal"].max() < 1 else df["brakePedal"].tolist() ), "throttlePedal_list": ( (df["throttlePedal"] * 100).tolist() if df["throttlePedal"].max() < 1 else df["throttlePedal"].tolist() ), "steeringWheel_list": df["steeringWheel"].tolist(), } return driver_ctrl_data def _get_report_info(self, df): """Extract report information from the DataFrame.""" mileage = self._mileage_cal(df) duration = self._duration_cal(df) return {"mileage": mileage, "duration": duration} def _mileage_cal(self, df): """Calculate mileage based on the driving data.""" if df["travelDist"].nunique() == 1: df["time_diff"] = df["simTime"].diff().fillna(0) df["avg_speed"] = (df["v"] + df["v"].shift()).fillna(0) / 2 df["distance_increment"] = df["avg_speed"] * df["time_diff"] / 3.6 df["travelDist"] = df["distance_increment"].cumsum().fillna(0) mileage = round(df["travelDist"].iloc[-1] - df["travelDist"].iloc[0], 2) return mileage return 0.0 # Return 0 if travelDist is not valid def _duration_cal(self, df): """Calculate duration of the driving data.""" return df["simTime"].iloc[-1] - df["simTime"].iloc[0]